基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为解决蒸汽驱开发效果预测精度低和时间长的问题,提出了一种改进人工蜂群算法和RBF(Radial Basis Function)神经网络相融合的预测方法.该方法应用种群最优解修改雇佣蜂解和观察蜂解的搜索方程,借鉴差分进化算法思想,完成对种群最优解和个体搜索解随机扰动,采用混合编码优化RBF神经网络参数.以辽河油田齐40块为例进行了试算,结果表明,该方法对蒸汽驱开发效果预测具有较好的非线性拟合能力和较高的预测精度.
推荐文章
基于RBF神经网络的水泥强度预测
神经网络
RBF神经网络
水泥强度
预测模型
基于RBF神经网络的货运量预测模型
货运量
RBF神经网络
预测模型
基于RBF神经网络的粮库温度预测
粮库温度
径向基函数神经网络
非线性时间序列
基于RBF神经网络的导弹成本预测研究
导弹
成本估算
RBF网络
BP网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于HABC-RBF神经网络的蒸汽驱预测方法
来源期刊 吉林大学学报(信息科学版) 学科 工学
关键词 RBF神经网络 人工蜂群算法 随机扰动 蒸汽驱 预测模型
年,卷(期) 2018,(1) 所属期刊栏目 计算机科学与技术
研究方向 页码范围 78-84
页数 7页 分类号 TP183
字数 4886字 语种 中文
DOI 10.3969/j.issn.1671-5896.2018.01.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李盼池 东北石油大学计算机与信息技术学院 93 344 9.0 11.0
2 刘永建 东北石油大学提高油气采收率教育部重点实验室 44 146 6.0 9.0
3 倪红梅 东北石油大学提高油气采收率教育部重点实验室 14 49 5.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (74)
共引文献  (42)
参考文献  (17)
节点文献
引证文献  (1)
同被引文献  (18)
二级引证文献  (3)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(1)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(9)
  • 参考文献(1)
  • 二级参考文献(8)
2014(17)
  • 参考文献(3)
  • 二级参考文献(14)
2015(12)
  • 参考文献(4)
  • 二级参考文献(8)
2016(4)
  • 参考文献(4)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
RBF神经网络
人工蜂群算法
随机扰动
蒸汽驱
预测模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
吉林大学学报(信息科学版)
双月刊
1671-5896
22-1344/TN
大16开
长春市南湖大路5372号
1983
chi
出版文献量(篇)
2333
总下载数(次)
2
总被引数(次)
16807
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导