基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高带钢厚度预测精度,构建了融合GA-BP神经网络和敏感性分析的T-GA-BP预测模型.首先通过循环迭代方式确定较优的BP神经网络隐含层的层数与节点数,再采用遗传算法对BP网络的权阈值进行优化.在此基础上,利用Tchaban算法进行敏感性分析,研究输入层中各工艺参数对带钢厚度的影响程度,筛选出重要参数作为新的输入样本来训练T-GA-BP神经网络模型,以降低网络复杂度.采用实际生产数据进行测试,结果表明,T-GA-BP模型的带钢厚度预测精度要高于BP、GA-BP、RBF、Elman神经网络等其他优化模型.同时,工艺参数敏感性分析结果可为轧制工艺调控方案的制定提供参考.
推荐文章
基于GA-BP神经网络算法的马铃薯晚疫病预测模型
马铃薯晚疫病
遗传算法
BP神经网络
归一化处理
基于GA-BP神经网络的电力系统负荷预测研究
电力系统
负荷预测
BP神经网络
遗传算法
GA-BP
基于GA-BP神经网络的城市用水量预测
城市用水
用水量预测
BP神经网络
预测建模
网络训练
仿真分析
基于GA-BP神经网络的粗粒土渗透系数预测
粗粒土
渗透系数
BP神经网络
遗传算法
孔隙比
级配
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于GA-BP神经网络与敏感性分析的带钢厚度预测
来源期刊 武汉科技大学学报(自然科学版) 学科 工学
关键词 带钢 厚度预测 GA-BP神经网络 遗传算法 Tchaban算法 敏感性分析
年,卷(期) 2018,(1) 所属期刊栏目
研究方向 页码范围 32-36
页数 5页 分类号 TG334.9+3|TP273+.3
字数 3921字 语种 中文
DOI 10.3969/j.issn.1674-3644.2018.01.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 唐秋华 武汉科技大学冶金装备及其控制教育部重点实验室 103 822 16.0 21.0
5 李维刚 武汉科技大学信息科学与工程学院 32 61 4.0 6.0
6 张利平 武汉科技大学冶金装备及其控制教育部重点实验室 33 255 11.0 14.0
10 吴倩 武汉科技大学冶金装备及其控制教育部重点实验室 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (41)
共引文献  (49)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(8)
  • 参考文献(2)
  • 二级参考文献(6)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
带钢
厚度预测
GA-BP神经网络
遗传算法
Tchaban算法
敏感性分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
武汉科技大学学报(自然科学版)
双月刊
1674-3644
42-1608/N
湖北武汉青山区
chi
出版文献量(篇)
2627
总下载数(次)
1
总被引数(次)
16881
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导