作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In the last decade,IoT has been widely used in smart cities,autonomous driving and Industry 4.0,which lead to improve efficiency,reliability,security and economic benefits.However,with the rapid development of new technologies,such as cognitive communication,cloud computing,quantum computing and big data,the IoT security is being confronted with a series of new threats and challenges.IoT device identification via Radio Frequency Fingerprinting(RFF)extracting from radio signals is a physical-layer method for IoT security.In physical-layer,RFF is a unique characteristic of IoT device themselves,which can difficultly be tampered.Just as people’s unique fingerprinting,different IoT devices exhibit different RFF which can be used for identification and authentication.In this paper,the structure of IoT device identification is proposed,the key technologies such as signal detection,RFF extraction,and classification model is discussed.Especially,based on the random forest and Dempster-Shafer evidence algorithm,a novel ensemble learning algorithm is proposed.Through theoretical modeling and experimental verification,the reliability and differentiability of RFF are extracted and verified,the classification result is shown under the real IoT device environments.
推荐文章
D-S改进算法在数据融合中的应用
D-S证据1理论
数据融合
证据组合
基于D-S证据理论的信息融合图像识别
信息融合
图像识别
纹理特征提取
灰度共生矩阵
灰度-梯度共生矩阵
D-S证据理论
信度函数
基于迭代合成的D-S证据理论改进方法
证据理论
合成规则
冲突证据
折扣因子
迭代
利用D-S证据理论的夜间车辆检测
D-S证据理论
夜间车辆
车辆检测
车灯检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Novel Ensemble Learning Algorithm Based on D-S Evidence Theory for IoT Security
来源期刊 计算机、材料和连续体(英文) 学科 工学
关键词 IOT SECURITY physical-layer SECURITY RADIO frequency fingerprinting RANDOM FOREST EVIDENCE theory
年,卷(期) 2018,(12) 所属期刊栏目
研究方向 页码范围 635-652
页数 18页 分类号 TN9
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
IOT
SECURITY
physical-layer
SECURITY
RADIO
frequency
fingerprinting
RANDOM
FOREST
EVIDENCE
theory
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机、材料和连续体(英文)
月刊
1546-2218
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
346
总下载数(次)
4
总被引数(次)
0
论文1v1指导