基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种基于多特征提取和支持向量机(support vector machines,SVM)参数优化的车型识别方法,此方法解决了采用单一特征容易受到光照、天气、阴影等环境影响的问题,并且可以对运动中的车辆进行车型识别.首先,采集车辆样本并进行图像预处理,提取车辆的几何特征、纹理特征和方向梯度直方图(histogram of oriented gradient,HOG)特征;其次,将提取的多种特征量进行组合测试,并与单个特征量的测试结果进行比较;最后,采用粒子群算法优化SVM的参数并使用优化的SVM参数进行运动车辆的车型识别.实验结果表明:提出的多特征提取和SVM参数优化相结合的车型识别方法能够取得很好的识别效果,识别率达到90%以上.
推荐文章
基于多特征提取和SVM分类器的木材显微识别
多特征提取
支持向量机
小规模数据
识别分类
木材显微细胞
基于离散Curvelet变换和LS-SVM的虹膜特征提取与识别
特征提取
分类识别
离散曲波变换
最小二乘支持向量机
最优二叉树
基于Gabor特征提取和SVM交通标志识别方法研究
交通标志识别
图像灰度化
图像增强
Gabor特征提取
主成分分析
支持向量机
基于Gabor、Fisher脸多特征提取及集成SVM的人脸表情识别
表情识别
改进的弹性模板
Gabor小波变换
Fisher脸
集成支持向量机
分类器级联
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多特征提取和SVM参数优化的车型识别
来源期刊 计量学报 学科 工学
关键词 计量学 车型识别 图像处理 多特征提取 支持向量机 参数优化
年,卷(期) 2018,(3) 所属期刊栏目
研究方向 页码范围 348-352
页数 5页 分类号 TB96|TP391.41
字数 3379字 语种 中文
DOI 10.3969/j.issn.1000-1158.2018.03.12
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 程淑红 燕山大学电气工程学院 33 161 8.0 10.0
3 高许 燕山大学电气工程学院 2 24 2.0 2.0
6 周斌 燕山大学电气工程学院 4 28 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (45)
共引文献  (20)
参考文献  (11)
节点文献
引证文献  (12)
同被引文献  (77)
二级引证文献  (18)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(4)
  • 参考文献(4)
  • 二级参考文献(0)
2018(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(13)
  • 引证文献(7)
  • 二级引证文献(6)
2020(15)
  • 引证文献(3)
  • 二级引证文献(12)
研究主题发展历程
节点文献
计量学
车型识别
图像处理
多特征提取
支持向量机
参数优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计量学报
月刊
1000-1158
11-1864/TB
大16开
北京1413信箱
2-798
1980
chi
出版文献量(篇)
3549
总下载数(次)
8
总被引数(次)
20173
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导