作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
利用中国铁路客运量2005-2016年的月度数据资料,采用乘积季节模型进行建模,对2017年1-6月进行预测;在Eviews和R软件操作下训练与测试数据,分别得到两种乘积季节模型;结果表明:两种软件下客运量的预测误差率均控制在10%以内,两种模型都能较好地预测铁路客运量未来数据的变化情况;通过比较,Eviews建立乘积季节模型,数据分析思维更加严谨,但操作较为复杂,平均预测误差率为4.59%,预测正确率稍低;R软件利用程辑包中相关分析、参数估计与预测函数等,可直接进行分析与预测,操作较为简便,平均预测误差率为3.36%,数据预测正确率较高;通过利用R软件建立ARIMA(2,1,1)×(1,1,1)12模型,此时模型预测精度较好,为预测未来全国铁路客运量变化提供一定的参考价值.
推荐文章
基于最小二乘支持向量机的铁路客运量预测研究
铁路客运量
最小二乘支持向量机
预测模型
支持向量回归机在铁路客运量时间序列预测中的应用
铁路客运量
ε支持向量回归机
人工神经网络
时间序列预测
灰色系统模型在水路客运量预测中的应用
灰色系统
残差修正
水路客运量
基于多元回归模型的航空运输客运量预测
民航客运量
需求预测
多元回归
灰色综合关联分析
影响因素
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于乘积季节模型的铁路客运量预测
来源期刊 重庆工商大学学报(自然科学版) 学科 数学
关键词 乘积季节模型 铁路客运量预测 Eviews R软件
年,卷(期) 2018,(3) 所属期刊栏目
研究方向 页码范围 18-25
页数 8页 分类号 O211.61
字数 4748字 语种 中文
DOI 10.16055/j.issn.1672-058X.2018.0003.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张杰 西南交通大学数学学院统计系 53 507 13.0 21.0
2 葛灵 西南交通大学数学学院统计系 3 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (30)
参考文献  (6)
节点文献
引证文献  (2)
同被引文献  (17)
二级引证文献  (1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
乘积季节模型
铁路客运量预测
Eviews
R软件
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆工商大学学报(自然科学版)
双月刊
1672-058X
50-1155/N
16开
重庆市南岸区学府大道21号
1983
chi
出版文献量(篇)
3397
总下载数(次)
6
总被引数(次)
14776
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导