基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
运动目标检测算法在视频监控等领域应用广泛,但是现实场景中由于噪音、光照变化等因素导致背景复杂多变,传统的运动目标检测算法往往效果不佳.为了提升算法效果,提出了一种新的基于深度编解码网络的运动目标检测算法,将问题转化为像素级的语义分割问题.事先使用大量数据离线训练出一个编解码网络,来学习背景与视频帧之间的差异性,实际应用中首先使用高斯混合模型进行背景建模,之后将所得背景与视频帧作为网络输入即可直接获取检测结果.该方法利用了深度卷积网络在抗噪及特征学习等方面的优点,无需进行复杂的参数调优即可实现高性能的运动目标检测.我们在CDnet2014数据集上进行了实验评估,实验结果显示我们所提出的算法较原GMM算法有很大提升,甚至在一些场景中的表现优于现有的一些顶尖算法.另外得益于非常简单的背景建模方法以及网络结构,我们的算法在使用GPU的情况下能够近乎实时地进行运动目标检测,实用性很强.
推荐文章
基于锚框的深度学习物体目标检测算法概览
深度学习
卷积神经网络
一阶段检测
二阶段检测
数据集
分类预测
位置回归
锚框
基于RGB直方图的运动目标检测算法
背景减除
背景构建
背景更新
RGB直方图
运动目标检测
基于概率估计的运动目标检测算法
背景重构
对称差分
分块
高斯分布
基于SIFT特征与预测的运动目标检测算法
目标检测
SIFT特征
旋转参数模型
动态场景
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度编解码网络的运动目标检测算法
来源期刊 计算机系统应用 学科
关键词 运动目标检测 深度学习 卷积神经网络 高斯混合模型
年,卷(期) 2018,(1) 所属期刊栏目 专论·综述
研究方向 页码范围 10-19
页数 10页 分类号
字数 8260字 语种 中文
DOI 10.15888/j.cnki.csa.006154
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 董兰芳 中国科学技术大学计算机科学与技术学院 58 518 13.0 21.0
2 侯畅 中国科学技术大学计算机科学与技术学院 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (4)
共引文献  (2)
参考文献  (9)
节点文献
引证文献  (2)
同被引文献  (9)
二级引证文献  (5)
1977(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(4)
  • 引证文献(1)
  • 二级引证文献(3)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
运动目标检测
深度学习
卷积神经网络
高斯混合模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
总被引数(次)
57078
论文1v1指导