原文服务方: 工业仪表与自动化装置       
摘要:
机械故障信号大多具有复杂多分量和调幅-调频的特点,但目前已有的方法在实际分析中多存在缺陷.为了有效识别故障特征频率,该文提出了一种基于EWT和峭度值的轴承故障检测方法.这种方法通过EWT对滚动轴承的振动信号进行分解,得到多个调频分量(AM-FM),并用文中提出的计算方法得到的各个调频分量的特征指标后进行筛选,得到包含敏感故障信息的分量.将该方法应用于轴承故障信号的解调分析,提高了分析的针对性.将改进方法应用于轴承故障实测信号分析,验证了该方法的准确性.
推荐文章
基于角域经验小波变换的滚动轴承故障诊断
变转速
滚动轴承
故障诊断
角域经验小波变换
滚动轴承故障诊断的多小波谱峭度方法
多小波
自适应构造
谱峭度
滚动轴承
故障诊断
基于小波变换的滚动轴承故障诊断分析
小波分析
滚动轴承
故障诊断
基于改进EMD与谱峭度的滚动轴承故障特征提取
经验模态分解
谱峭度
滚动轴承
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于经验小波变换和峭度值的滚动轴承故障检测方法
来源期刊 工业仪表与自动化装置 学科
关键词 经验小波变换 故障诊断 轴承故障 振动信号处理
年,卷(期) 2018,(6) 所属期刊栏目 设计与应用
研究方向 页码范围 26-30
页数 5页 分类号 TH165.3
字数 语种 中文
DOI 10.3969/j.issn.1000-0682.2018.06.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 武奇生 长安大学电子与控制工程学院 45 251 9.0 13.0
2 白璘 长安大学电子与控制工程学院 18 83 6.0 8.0
3 席维 长安大学电子与控制工程学院 2 11 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (50)
共引文献  (29)
参考文献  (11)
节点文献
引证文献  (9)
同被引文献  (42)
二级引证文献  (0)
1976(2)
  • 参考文献(0)
  • 二级参考文献(2)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(5)
  • 参考文献(1)
  • 二级参考文献(4)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(3)
  • 参考文献(2)
  • 二级参考文献(1)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(4)
  • 引证文献(4)
  • 二级引证文献(0)
2020(5)
  • 引证文献(5)
  • 二级引证文献(0)
研究主题发展历程
节点文献
经验小波变换
故障诊断
轴承故障
振动信号处理
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
工业仪表与自动化装置
双月刊
1000-0682
61-1121/TH
大16开
1971-01-01
chi
出版文献量(篇)
3676
总下载数(次)
0
总被引数(次)
18688
论文1v1指导