基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
短时交通流量预测是交通控制和诱导涉及的关键技术问题,由于短时交通流量存在不确定性和时变性,其预测难度较大,是相关研究领域与工程实践中亟待解决的难题.为提高短时交通流量预测的准确性,本文设计与实现了基于相似数据聚合和变K值KNN(KNN-SDA)的短时交通流量预测算法.该算法首先采用互信息法在经过预处理的交通流量数据集提取交通流量序列最佳延迟时间信息,生成状态向量,并构建交通流量历史数据库;然后以本文所提出的相似数据聚合方法完成历史数据的聚合与清洗得到训练数据集;最后通过交叉验证确定每个时刻的最优K近邻数,完成算法实现.实验结果表明,本文提出的变K值KNN-SDA算法在保证执行效率的同时能明显提高短时交通流量的预测精度.
推荐文章
基于核学习方法的短时交通流量预测
核学习方法
短时交通流
预测
基于深度学习的短时交通流预测
交通流预测
深度学习
短时交通流
支持向量回归
基于模糊神经网络的短时交通流预测方法研究
模糊神经网络
短时交通流
预测方法
基于改进KNN算法的交通流异常数据修复方法
交通流
异常数据修复
KNN算法
近邻值
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于相似数据聚合与变K值KNN的短时交通流量预测
来源期刊 地球信息科学学报 学科
关键词 短时交通流预测 互信息法 相似数据聚合 KNN 交叉验证
年,卷(期) 2018,(10) 所属期刊栏目 地球信息科学理论与方法
研究方向 页码范围 1403-1411
页数 9页 分类号
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (106)
共引文献  (194)
参考文献  (21)
节点文献
引证文献  (2)
同被引文献  (9)
二级引证文献  (0)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(1)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(6)
  • 参考文献(1)
  • 二级参考文献(5)
2003(13)
  • 参考文献(0)
  • 二级参考文献(13)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(14)
  • 参考文献(3)
  • 二级参考文献(11)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(8)
  • 参考文献(2)
  • 二级参考文献(6)
2010(10)
  • 参考文献(1)
  • 二级参考文献(9)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(12)
  • 参考文献(2)
  • 二级参考文献(10)
2014(7)
  • 参考文献(4)
  • 二级参考文献(3)
2015(4)
  • 参考文献(4)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
短时交通流预测
互信息法
相似数据聚合
KNN
交叉验证
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
地球信息科学学报
月刊
1560-8999
11-5809/P
大16开
北京大屯路甲11号
82-919
1996
chi
出版文献量(篇)
3070
总下载数(次)
24
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导