基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 高光谱图像包含了丰富的空间、光谱和辐射信息,能够用于精细的地物分类,但是要达到较高的分类精度,需要解决高维数据与有限样本之间存在矛盾的问题,并且降低因噪声和混合像元引起的同物异谱的影响.为有效解决上述问题,提出结合超像元和子空间投影支持向量机的高光谱图像分类方法.方法 首先采用简单线性迭代聚类算法将高光谱图像分割成许多无重叠的同质性区域,将每一个区域作为一个超像元,以超像元作为图像分类的最小单元,利用子空间投影算法对超像元构成的图像进行降维处理,在低维特征空间中执行支持向量机分类.本文高光谱图像空谱综合分类模型,对几何特征空间下的超像元分割与光谱特征空间下的子空间投影支持向量机(SVMsub),采用分割后进行特征融合的处理方式,将像元级别转换为面向对象的超像元级别,实现高光谱图像空谱综合分类.结果 在AVIRIS(airbone visible/infrared imaging spectrometer)获取的Indian Pines数据和Re-flective ROSIS(optics system spectrographic imaging system)传感器获取的University of Pavia数据实验中,子空间投影算法比对应的非子空间投影算法的分类精度高,特别是在样本数较少的情况下,分类效果提升明显;利用马尔可夫随机场或超像元融合空间信息的算法比对应的没有融合空间信息的算法的分类精度高;在两组数据均使用少于1%的训练样本情况下,同时融合了超像元和子空间投影的支持向量机算法在两组实验中分类精度均为最高,整体分类精度高出其他相关算法4%左右.结论 利用超像元处理可以有效融合空间信息,降低同物异谱对分类结果的不利影响;采用子空间投影能够将高光谱数据变换到低维空间中,实现有限训练样本条件下的高精度分类;结合超像元和子空间投影支持向量机的算法能够得到较高的高光谱图像分类精度.
推荐文章
利用特征子空间评价与多分类器融合的高光谱图像分类
高光谱图像
多分类器融合
自适应子空间分解
加权表决
基于小波子空间、支持向量机和模糊积分的信号多类分类算法
小波子空间
支持向量机
特征提取
信号分类
模糊积分
结合空间信息的高光谱图像快速分类方法
高光谱图像
空间区域特征光谱
非线性特征提取
分类
基于支持向量机的路面图像分类方法
路面分类
颜色特征
纹理特征
模糊支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合超像元和子空间投影支持向量机的高光谱图像分类
来源期刊 中国图象图形学报 学科 工学
关键词 高光谱图像 图像分类 子空间投影 超像元 支持向量机
年,卷(期) 2018,(1) 所属期刊栏目 遥感图像处理
研究方向 页码范围 95-105
页数 11页 分类号 TP751
字数 6252字 语种 中文
DOI 10.11834/jig.170201
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张兵 中国科学院遥感与数字地球研究所 163 3918 35.0 58.0
5 李伟 30 314 8.0 17.0
6 高连如 中国科学院遥感与数字地球研究所 20 187 7.0 13.0
7 冉琼 1 10 1.0 1.0
8 于浩洋 中国科学院遥感与数字地球研究所 1 10 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (66)
参考文献  (16)
节点文献
引证文献  (10)
同被引文献  (32)
二级引证文献  (7)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(3)
  • 参考文献(3)
  • 二级参考文献(0)
2012(5)
  • 参考文献(2)
  • 二级参考文献(3)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(6)
  • 引证文献(5)
  • 二级引证文献(1)
2020(10)
  • 引证文献(4)
  • 二级引证文献(6)
研究主题发展历程
节点文献
高光谱图像
图像分类
子空间投影
超像元
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导