基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对静态手势识别任务中,传统基于人工提取特征方法耗时耗力,识别率较低,现有卷积神经网络依赖单一卷积核提取特征不够充分的问题,提出双通道卷积神经网络模型.输入手势图片通过两个相互独立的通道进行特征提取,双通道具有尺度不同的卷积核,能够提取输入图像中不同尺度的特征,然后在全连接层进行特征融合,最后经过softmax分类器进行分类.在Thomas Moeslund和Jochen Triesch手势数据库上进行实验验证,结果表明该模型提高了静态手势识别的准确率,增强了卷积神经网络的泛化能力.
推荐文章
基于改进卷积神经网络的手势识别
改进卷积神经网络
手势识别
准确率
图像处理
过拟合
Dropout
基于多尺度卷积神经网络模型的手势图像识别
卷积神经网络
卷积核
深度学习
特征提取
手势识别
二值化
基于Leap Motion和卷积神经网络的手势识别
手势识别
高精度
Leap Motion
灰度处理
卷积神经网络
深度学习
卷积神经网络在岩性识别中的应用
测井解释
深度学习
卷积神经网络
岩性识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 双通道卷积神经网络在静态手势识别中的应用
来源期刊 计算机工程与应用 学科 工学
关键词 静态手势识别 卷积神经网络 双通道 卷积核
年,卷(期) 2018,(14) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 148-152,162
页数 6页 分类号 TP183
字数 6071字 语种 中文
DOI 10.3778/j.issn.1002-8331.1703-0140
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张立民 海军航空工程学院信息融合研究所 163 596 11.0 15.0
2 邓向阳 海军航空工程学院信息融合研究所 15 45 4.0 6.0
3 冯家文 海军航空工程学院信息融合研究所 2 14 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (1)
节点文献
引证文献  (10)
同被引文献  (28)
二级引证文献  (6)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(4)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(4)
  • 二级引证文献(0)
2018(4)
  • 引证文献(4)
  • 二级引证文献(0)
2019(8)
  • 引证文献(5)
  • 二级引证文献(3)
2020(4)
  • 引证文献(1)
  • 二级引证文献(3)
研究主题发展历程
节点文献
静态手势识别
卷积神经网络
双通道
卷积核
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导