基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为进一步提高卷积神经网络的训练速度,减少训练成本,建立了量子门组卷积神经网络模型(Quantum Gate Convolutional Neural Network,QGCNN).为了构建QGCNN网络结构,依据传统CNN结构的特点,给出卷积算术线路(Convolutional Arithmetic Circuit,ConvAC)的定义.用张量分解来说明ConvAC的权值系数之间的关系,为构建QGCNN提供理论依据.将QGCNN分为输入表示层、隐藏层和输出层,在此基础上实现对数据进行量子编码,利用量子门组完成数据初始化,网络参数更新等操作.将QGCNN应用到数字手写体识别中,实验结果表明,该方法在手写体识别的准确率和收敛速度上有不错的效果.
推荐文章
基于FPGA的卷积神经网络设计与实现
卷积神经网络
现场可编程门阵列
阵列处理器
并行性
基于FPGA的卷积神经网络加速器设计与实现
卷积神经网络
现场可编程门阵列
加速器
有限资源
基于RISC-V的卷积神经网络处理器设计与实现
处理器
卷积神经网络
定制指令集
RISC-V
基于并行卷积核交叉模块的卷积神经网络设计
卷积神经网络
网络改进
卷积核
图像分类
特征提取
结果分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于量子门组的卷积神经网络设计与实现
来源期刊 计算机工程与应用 学科 工学
关键词 量子计算 量子神经网络 卷积神经网络 量子门
年,卷(期) 2018,(20) 所属期刊栏目 理论与研发
研究方向 页码范围 54-61
页数 8页 分类号 TP18
字数 5787字 语种 中文
DOI 10.3778/j.issn.1002-8331.1709-0423
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘宏志 北京工商大学计算机信息与工程学院 60 418 10.0 17.0
2 许兴阳 北京工商大学计算机信息与工程学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (539)
参考文献  (19)
节点文献
引证文献  (2)
同被引文献  (8)
二级引证文献  (0)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(5)
  • 参考文献(2)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(3)
  • 参考文献(3)
  • 二级参考文献(0)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
量子计算
量子神经网络
卷积神经网络
量子门
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导