原文服务方: 微电子学与计算机       
摘要:
聚类分析在无监督学习领域中一直备受国内外学者关注,针对K-means聚类算法对初始聚类中心点敏感、簇内数据相关性差以及收敛到局部最优的缺点,提出了一种基于离群因子的优化聚类算法.该算法采用信息熵加权欧式距离作为相似性度量依据,以更明显地区分数据对象间的差异,然后利用k距离参数自调整的局部异常因子检测算法计算出各数据点的离群因子并筛选出初始聚类中心的候选集,最后根据其离群因子加权距离法优化聚类中心.通过在UCI数据集上的实验测试结果表明,优化算法的准确率比K-means++算法、OFMMK-means算法、FCM算法更高,运行速度比FCM算法更快.该算法能够更好地应用于入侵行为检测、信用风险评估以及多故障诊断等领域.
推荐文章
基于改进果蝇优化的密度峰值聚类算法
密度峰值聚类
截断距离
果蝇优化算法
Tent混沌
柯西变异
收敛性
基于 WSRFCM 聚类的局部离群点检测算法
特征加权
阴影集
阴影粗糙模糊聚类
局部离群度
离群点检测
基于聚类粒子群算法网络异常检测模型研究
网络异常
均值聚类
遗传算法
入侵检测
基于K-均值聚类的工业异常数据检测
遥测与遥信数据
异常检测
时序特征
聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进的局部异常因子检测的优化聚类算法
来源期刊 微电子学与计算机 学科
关键词 聚类 Kmeans 加权欧式距离 LOF算法 优化
年,卷(期) 2019,(11) 所属期刊栏目
研究方向 页码范围 43-48
页数 6页 分类号 TP181
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈世国 贵州师范大学物理与电子科学学院 36 130 6.0 10.0
2 张丹丹 贵州师范大学物理与电子科学学院 11 6 2.0 2.0
3 游子毅 贵州师范大学物理与电子科学学院 14 32 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (81)
共引文献  (106)
参考文献  (10)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(8)
  • 参考文献(0)
  • 二级参考文献(8)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(23)
  • 参考文献(2)
  • 二级参考文献(21)
2015(9)
  • 参考文献(2)
  • 二级参考文献(7)
2016(4)
  • 参考文献(3)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
聚类
Kmeans
加权欧式距离
LOF算法
优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导