基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
通道剪枝是深度模型压缩的主要方法之一.针对密集连接卷积神经网络中,每一层都接收其前部所有卷积层的输出特征图作为输入,但并非每个后部层都需要所有先前层的特征,网络中存在很大冗余的缺点.本文提出一种自学习剪枝密集连接网络中冗余通道的方法,得到稀疏密集连接卷积神经网络.首先,提出了一种衡量每个卷积层中每个输入特征图对输出特征图贡献度大小的方法,贡献度小的输入特征图即为冗余特征图;其次,介绍了通过自学习,网络分阶段剪枝冗余通道的训练过程,得到了稀疏密集连接卷积神经网络,该网络剪枝了密集连接网络中的冗余通道,减少了网络参数,降低了存储和计算量;最后,为了验证本文方法的有效性,在图像分类数据集CIFAR-10/100上进行了实验,在不牺牲准确率的前提下减小了模型冗余.
推荐文章
基于密集连接空洞卷积神经网络的青藏地区云雪图像分类
云雪图像识别
特征提取
跨层连接
空洞卷积
基于卷积神经网络的植物图像分类方法研究
卷积神经网络
图像特征
图像分类
全卷积网络
植物图像
数据集
基于小波和自学习神经网络的图像分割
小波神经网络
图像分割
FLIR
自学习状态
自学习神经元及自学习BP网络
自学习神经元
自学习BP网络
学习策略
面向神经元
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 自学习稀疏密集连接卷积神经网络图像分类方法
来源期刊 信号处理 学科 工学
关键词 剪枝冗余通道 自学习 稀疏化密集连接卷积神经网络 图像分类
年,卷(期) 2019,(10) 所属期刊栏目 应用
研究方向 页码范围 1747-1752
页数 6页 分类号 TN911.73
字数 3547字 语种 中文
DOI 10.16798/j.issn.1003-0530.2019.10.016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵振兵 华北电力大学电子与通信工程系 54 713 15.0 25.0
2 郭玉荣 华北电力大学电子与通信工程系 3 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (52)
共引文献  (365)
参考文献  (3)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
剪枝冗余通道
自学习
稀疏化密集连接卷积神经网络
图像分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号处理
月刊
1003-0530
11-2406/TN
大16开
北京鼓楼西大街41号
18-143
1985
chi
出版文献量(篇)
5053
总下载数(次)
13
总被引数(次)
32728
论文1v1指导