作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Applying quantum computing techniques to machine learning has attracted widespread attention recently and quantum machine learning has become a hot research topic. There are three major categories of machine learning: supervised, unsupervised, and reinforcement learning (RL). However, quantum RL has made the least progress when compared to the other two areas. In this study, we implement the well-known RL algorithm Q learning with a quantum neural network and evaluate it in the grid world environment. RL is learning through interactions with the environment, with the aim of discovering a strategy to maximize the expected cumulative rewards. Problems in RL bring in unique challenges to the study with their sequential nature of learning, potentially long delayed reward signals, and large or infinite size of state and action spaces. This study extends our previous work on solving the contextual bandit problem using a quantum neural network, where the reward signals are immediate after each action.
推荐文章
基于recurrent neural networks的网约车供需预测方法
长短时记忆循环神经网络
网约车数据
交通优化调度
TensorFlow
深度学习
结合神经网络和Q(λ)-learning的路径规划方法
路径规划
神经网络
强化学习
移动机器人
奖励函数
改进的Q-Learning算法及其在路径规划中的应用
路径规划
人工智能
强化学习
Q-Learning
基于Q-learning的机会频谱接入信道选择算法
认知无线电
机会频谱接入
Q学习
信道选择
Boltzmann规则
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Q Learning with Quantum Neural Networks
来源期刊 自然科学期刊(英文) 学科 医学
关键词 Continuous-Variable QUANTUM COMPUTERS QUANTUM Machine LEARNING QUANTUM REINFORCEMENT LEARNING Q LEARNING GRID World Environment
年,卷(期) 2019,(1) 所属期刊栏目
研究方向 页码范围 31-39
页数 9页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Continuous-Variable
QUANTUM
COMPUTERS
QUANTUM
Machine
LEARNING
QUANTUM
REINFORCEMENT
LEARNING
Q
LEARNING
GRID
World
Environment
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自然科学期刊(英文)
月刊
2150-4091
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1054
总下载数(次)
0
总被引数(次)
0
论文1v1指导