基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
深度学习善于从原始数据输入中挖掘其内在的抽象特征,十余年来,其在语音识别、语义分析、图像分析等领域取得了巨大成功,也大大推动了人工智能的发展.本文基于深度学习中广泛应用的卷积神经网络算法,以大庆油田某区块密井网数据为对象,开展自动地层对比试验.实验中,随机选取部分井作为训练样本,对另一部分井分层进行预测,并与原始分层数据比对进行误差分析.按照训练样本的井数据比例65%、40%、20%和10%,将实验分为4组,每组实验包括油层组、砂层组和小层级3个相互独立的实验.12个实验结果表明:训练量越大,地层级别越高(厚度越厚),自动对比效果越好;20%的训练量就可以较可靠地进行砂组及以上级别地层单元(厚度不小于10 m)的自动对比.该实验表明卷积神经网络算法能有效应用于依据测井曲线进行油藏规模地层自动对比,具有良好的发展前景.
推荐文章
基于卷积神经网络的垃圾自动分类算法
卷积神经网络
MobileNetV2
ShuffleNetV1
垃圾分类
基于卷积神经网络的对比度失真图像质量评价
视觉质量评价
对比度失真
卷积神经网络
卷积层
基于卷积神经网络的乳腺疾病检测算法
卷积神经网络
特征融合
空间金字塔池化
尺度无关
乳腺疾病检测
基于稀疏卷积神经网络的考生识别算法
考生识别
卷积神经网络
人脸识别
身份验证
多通道输入
方法比
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络算法的自动地层对比实验
来源期刊 石油科学通报 学科
关键词 地层自动对比 深度学习 卷积神经网络 训练与预测
年,卷(期) 2019,(1) 所属期刊栏目
研究方向 页码范围 1-10
页数 10页 分类号
字数 5186字 语种 中文
DOI 10.3969/j.issn.2096-1693.2019.01.001
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 何辉 19 88 6.0 8.0
2 高建 58 646 13.0 23.0
3 周新茂 21 289 9.0 16.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (93)
共引文献  (499)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1943(2)
  • 参考文献(0)
  • 二级参考文献(2)
1958(2)
  • 参考文献(0)
  • 二级参考文献(2)
1962(2)
  • 参考文献(0)
  • 二级参考文献(2)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(2)
  • 参考文献(0)
  • 二级参考文献(2)
1986(2)
  • 参考文献(1)
  • 二级参考文献(1)
1987(2)
  • 参考文献(2)
  • 二级参考文献(0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(4)
  • 参考文献(1)
  • 二级参考文献(3)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(6)
  • 参考文献(1)
  • 二级参考文献(5)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(11)
  • 参考文献(1)
  • 二级参考文献(10)
2013(10)
  • 参考文献(1)
  • 二级参考文献(9)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(9)
  • 参考文献(1)
  • 二级参考文献(8)
2016(13)
  • 参考文献(2)
  • 二级参考文献(11)
2017(5)
  • 参考文献(2)
  • 二级参考文献(3)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
地层自动对比
深度学习
卷积神经网络
训练与预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
石油科学通报
季刊
2096-1693
10-1405/TE
大16开
北京市
80-137
2016
chi
出版文献量(篇)
288
总下载数(次)
0
总被引数(次)
432
论文1v1指导