基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 针对农作物种植趋向集中化、机械化和庄园化的现状,高分辨率遥感影像精准识别技术已广泛应用于农作物分类.研究表明,采用先进的深度学习算法挖掘高分辨率农作物影像信息,有利于高效地分析农作物长势和参量预测,为此,提出一种改进型深度神经网络(DeepLab)的高分辨率果园遥感图像分割算法.方法 首先提取原始数据的极化特征和基于相干/非相干分解的特征组成高维特征空间,然后选用流行学习降维方式获得最优3通道特征向量构成伪彩图,利用深度可分离网络(xception)、空洞卷积网络(atrous convolution)、多孔空间金字塔(ASPP)和上采样(upsample)搭建DeepLab的编码解码过程(encoder-decoder),最后将伪彩训练集和标签导入搭建的DeepLab进行训练并保存模型,利用模型对目标数据进行有效分类.结果 利用本算法对中国海南某地的Ⅰ期芒果、Ⅱ期芒果、Ⅲ期芒果、槟榔、龙眼5类水果进行分类,针对不同时期的同一种水果分类错误率下降了8%左右,相比传统的果园分类算法,本算法的kappa系数提高了约0.1,总体分类精度(OA)也有一定程度的提高.结论 本算法在保证不同类别水果分类准确率的基础上,提高了不同时期的同一类水果的分类准确率,在一定程度上提高了农作物长势分析的准确性,保证了高分辨率果园数据分析的可靠性.
推荐文章
引入极化方位角特征的极化 SAR 图像分类
极化合成孔径雷达
图像分类
四分量分解
极化方位角
Wishart 迭代
基于目标分解的极化SAR图像SVM监督分类
极化合成孔径雷达
图像分类
目标分解
支持向量机
Wishart迭代
模糊C-均值
基于H/A/α-Wishart分类的极化SAR图像船只检测
极化合成孔径雷达
船只检测
目标分解
非监督分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进型DeepLab的极化SAR果园分类
来源期刊 中国图象图形学报 学科 工学
关键词 高分辨率 空洞卷积 深度学习 多孔空间金字塔 深度可分离网络
年,卷(期) 2019,(11) 所属期刊栏目 遥感图像处理
研究方向 页码范围 2035-2044
页数 10页 分类号 TP181
字数 5805字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王云艳 湖北工业大学电气与电子工程学院 24 76 6.0 8.0
2 罗冷坤 2 1 1.0 1.0
3 周志刚 湖北工业大学电气与电子工程学院 4 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (204)
共引文献  (50)
参考文献  (18)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(5)
  • 参考文献(0)
  • 二级参考文献(5)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(5)
  • 参考文献(1)
  • 二级参考文献(4)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(8)
  • 参考文献(0)
  • 二级参考文献(8)
2007(8)
  • 参考文献(0)
  • 二级参考文献(8)
2008(9)
  • 参考文献(1)
  • 二级参考文献(8)
2009(11)
  • 参考文献(0)
  • 二级参考文献(11)
2010(10)
  • 参考文献(0)
  • 二级参考文献(10)
2011(18)
  • 参考文献(0)
  • 二级参考文献(18)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(18)
  • 参考文献(1)
  • 二级参考文献(17)
2014(22)
  • 参考文献(1)
  • 二级参考文献(21)
2015(24)
  • 参考文献(0)
  • 二级参考文献(24)
2016(12)
  • 参考文献(2)
  • 二级参考文献(10)
2017(24)
  • 参考文献(4)
  • 二级参考文献(20)
2018(11)
  • 参考文献(6)
  • 二级参考文献(5)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高分辨率
空洞卷积
深度学习
多孔空间金字塔
深度可分离网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导