基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 高光谱分类任务中,由于波段数量较多,图像中存在包含噪声以及各类地物样本分布不均匀等问题,导致分类精度与训练效率不能平衡,在小样本上分类精度低.因此,提出一种基于级联多分类器的高光谱图像分类方法.方法 首先采用主成分分析方法将高度相关的高维特征合成无关的低维特征,以加快Gabor滤波器提取纹理特征的速度;然后使用Gabor滤波器提取图像在各个尺寸、方向上的纹理信息,每一个滤波器会生成一张特征图,在特征图中以待分类样本为中心取一个d×d的邻域,计算该邻域内数据的均值和方差来作为待分类样本的空间信息,再将空间信息和光谱信息融合,以降低光线与噪声的影响;最后将谱—空联合特征输入级联多分类器中,得到预测样本关于类别的概率分布的平均值.结果 实验采用Indian Pines、Pavia University和Salinas 3个数据集,与经典算法如支持向量机和卷积神经网络进行比较,并利用总体分类精度、平均分类精度和Kappa系数作为评价标准进行分析.本文方法总体分类精度在3个数据集上分别达到97.24%、99.57%和99.46%,相对于基于径向基神经网络(RBF)核函数的支持向量机方法提高了13.2%、4.8%和5.68%,相对于加入谱—空联合特征的RBF-SVM(radial basis function-support vector machine)方法提高了2.18%、0.36%和0.83%,相对于卷积神经网络方法提高了3.27%、3.2%和0.3%;Kappa系数分别是0.968 6、0.994 3和0.995 6,亦有提高.结论 实验结果表明,本文方法应用于高光谱图像分类具有较优的分类效果,训练效率较高,无需依赖GPU,而且在小样本上也具有较高的分类精度.
推荐文章
利用特征子空间评价与多分类器融合的高光谱图像分类
高光谱图像
多分类器融合
自适应子空间分解
加权表决
基于高光谱图像的分类方法研究
高光谱图像
支持向量机
人工神经元网络
决策树分类
最大似然分类法
K -均值聚类法
迭代自组织方法
基于图像分割和LSSVM的高光谱图像分类
高光谱图像分类
图像分割
LSSVM
数据降维
结合空间信息的高光谱图像快速分类方法
高光谱图像
空间区域特征光谱
非线性特征提取
分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 应用级联多分类器的高光谱图像分类
来源期刊 中国图象图形学报 学科 工学
关键词 高光谱图像 Gabor滤波器 级联多分类器 主成分分析 谱—空联合特征 小样本
年,卷(期) 2019,(11) 所属期刊栏目 遥感图像处理
研究方向 页码范围 2021-2034
页数 14页 分类号 TP301.6
字数 7517字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 邱云飞 辽宁工程技术大学软件学院 70 620 13.0 22.0
2 王星苹 辽宁工程技术大学软件学院 1 0 0.0 0.0
3 王春艳 辽宁工程技术大学软件学院 12 32 4.0 5.0
4 孟令国 辽宁工程技术大学软件学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (62)
共引文献  (24)
参考文献  (23)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1968(3)
  • 参考文献(1)
  • 二级参考文献(2)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(4)
  • 参考文献(2)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(8)
  • 参考文献(1)
  • 二级参考文献(7)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(11)
  • 参考文献(3)
  • 二级参考文献(8)
2016(7)
  • 参考文献(2)
  • 二级参考文献(5)
2017(10)
  • 参考文献(5)
  • 二级参考文献(5)
2018(3)
  • 参考文献(2)
  • 二级参考文献(1)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高光谱图像
Gabor滤波器
级联多分类器
主成分分析
谱—空联合特征
小样本
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导