基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着卷积神经网络(CNN)的提出,行人检测方法的正确率已经得到了很大提升,尽管CNN模型可以学习到目标的不同变化,然而自动驾驶场景下的行人检测依然面临着巨大挑战,主要表现为广泛的尺度变化、光照变化以及不同程度的遮挡.在已有CNN网络的基础上,提出一种更为鲁棒的行人检测方法,其主要思想是在原有检测器的基础上利用像素级的语义信息作为额外的监督来训练CNN.该算法首先提取CNN不同尺度的特征图,在这些特征图上铺设不同大小的目标候选框,添加一层卷积层对这些目标候选框进行分类和回归,同时利用这些特征图生成语义分割图,最终分为两路分别监督目标检测结果和语义分割结果.在最新的行人检测数据集CityPersons上的结果表明,结合语义信息可以提升算法的检测成功率,并且不增加算法耗时,在数据集中1 024×2 048 pixels的图像上平均检测耗时仅为0.3s一张图像.
推荐文章
一种结合图像信息的视频行人检测网络研究
视频行人检测
卷积网络
多上下文抑制
信息向量传播
管束重评分
基于多重稀疏字典的行人检测方法
行人检测
特征提取
稀疏表示
多重稀疏
字典
面向监视视频实时分析的快速行人检测方法
行人检测
运动侦测
支持向量机
Haar
帧间滤波
积分图
监视视频
采用HOG特征和机器学习的 行人检测方法
行人检测
行人候选区域
梯度方向直方图
反向传播神经网络
Adaboost算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合语义信息的行人检测方法
来源期刊 电子测量与仪器学报 学科 工学
关键词 自动驾驶 车辆检测 卷积神经网络
年,卷(期) 2019,(1) 所属期刊栏目 学术论文
研究方向 页码范围 54-60
页数 7页 分类号 TP391|TN919.85
字数 语种 中文
DOI 10.13382/j.jemi.B1801706
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (42)
共引文献  (134)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(7)
  • 参考文献(2)
  • 二级参考文献(5)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(5)
  • 参考文献(1)
  • 二级参考文献(4)
2016(5)
  • 参考文献(1)
  • 二级参考文献(4)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
自动驾驶
车辆检测
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子测量与仪器学报
月刊
1000-7105
11-2488/TN
大16开
北京市东城区北河沿大街79号
80-403
1987
chi
出版文献量(篇)
4663
总下载数(次)
23
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导