基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
人类面部表情是其心理情绪变化的最直观刻画,不同人的面部表情具有很大差异,现有表情识别方法均利用面部统计特征区分不同表情,其缺乏对于人脸细节信息的深度挖掘.根据心理学家对面部行为编码的定义可以看出,人脸的局部细节信息决定了其表情意义.因此该文提出一种基于多尺度细节增强的面部表情识别方法,针对面部表情受图像细节影响较大的特点,提出利用高斯金字塔提取图像细节信息,并对图像进行细节增强,从而强化人脸表情信息.针对面部表情的局部性特点,提出利用层次结构的局部梯度特征计算方法,描述面部特征点局部形状特征.最后,使用支持向量机(SVM)对面部表情进行分类.该文在CK+表情数据库中的实验结果表明,该方法不仅验证了图像细节对面部表情识别过程的重要作用,而且在小规模训练数据下也能够得到非常好的识别结果,表情平均识别率达到98.19%.
推荐文章
基于面部结构的表情识别
人脸表情识别
判别响应图拟合
联合Haar-like特征
Boosting学习
基于深度学习的面部表情识别研究
深度学习
表情识别
神经网络
基于Gabor和ADABOOST的面部表情识别
面部表情识别
Gabor变换
Adaboost算法
主成分分析
基于多尺度融合注意力机制的人脸表情识别研究
计算机视觉
深度学习
人脸表情识别
特征提取
多尺度特征融合
注意力机制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多尺度细节增强的面部表情识别方法
来源期刊 电子与信息学报 学科 工学
关键词 表情识别 图像金字塔 高斯差分 细节增强 支持向量机
年,卷(期) 2019,(11) 所属期刊栏目 论文
研究方向 页码范围 2752-2759
页数 8页 分类号 TP391.41
字数 5391字 语种 中文
DOI 10.11999/JEIT181088
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 樊亚春 北京师范大学虚拟现实应用教育部工程研究中心 18 111 6.0 10.0
2 李昭伟 首都师范大学信息工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (70)
共引文献  (86)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(6)
  • 参考文献(0)
  • 二级参考文献(6)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(7)
  • 参考文献(1)
  • 二级参考文献(6)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(5)
  • 参考文献(2)
  • 二级参考文献(3)
2015(5)
  • 参考文献(2)
  • 二级参考文献(3)
2016(12)
  • 参考文献(2)
  • 二级参考文献(10)
2017(3)
  • 参考文献(2)
  • 二级参考文献(1)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
表情识别
图像金字塔
高斯差分
细节增强
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子与信息学报
月刊
1009-5896
11-4494/TN
大16开
北京市北四环西路19号
2-179
1979
chi
出版文献量(篇)
9870
总下载数(次)
11
总被引数(次)
95911
论文1v1指导