基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Interior Alaska has a short growing season of 110 d.The knowledge of timings of crop flowering and maturity will provide the information for the agricultural decision making.In this study,six machine learning algorithms,namely Linear Discriminant Analysis(LDA),Support Vector Machines(SVMs),k-nearest neighbor(kNN),Na?ve Bayes(NB),Recursive Partitioning and Regression Trees(RPART),and Random Forest(RF),were selected to forecast the timings of barley flowering and maturity based on the Alaska Crop Datasets and climate data from 1991 to 2016 in Fairbanks,Alaska.Among 32 models fit to forecast flowering time,two from LDA,12 from SVMs,four from NB,three from RF outperformed models from other algorithms with the highest accuracy.Models from kNN performed worst to forecast flowering time.Among 32 models fit to forecast maturity time,two models from LDA outperformed the models from other algorithms.Models from kNN and RPART performed worst to forecast maturity time.Models from machine learning methods also provided a variable importance explanation.In this study,four out of six algorithms gave the same variable importance order.Sowing date was the most important variable to forecast flowering but less important variable to forecast maturity.The daily maximum temperature may be more important than daily minimum temperature to fit flowering models while daily minimum temperature may be more important than daily maximum temperature to fit maturity models.The results indicate that models from machine learning provide a promising technique in forecasting the timings of flowering and maturity of barley.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Six1在宫颈癌组织中的表达及意义
宫颈肿瘤
基因,同源盒
Six1
免疫组织化学
肿瘤浸润
肿瘤转移
HeLa细胞
大肠癌组织中Six1和CyclinD1的表达及其临床意义
大肠癌
Six1
CyclinD1
浸润
转移
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Forecasting Flowering and Maturity Times of Barley Using Six Machine Learning Algorithms
来源期刊 农业科学与技术:B 学科 工学
关键词 Machine learning FLOWERING and MATURITY Linear DISCRIMINANT Analysis Support Vector Machines k-nearest NEIGHBOR Na?ve Bayes RECURSIVE partitioning regression trees Random Forest
年,卷(期) 2019,(6) 所属期刊栏目
研究方向 页码范围 373-391
页数 19页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Machine
learning
FLOWERING
and
MATURITY
Linear
DISCRIMINANT
Analysis
Support
Vector
Machines
k-nearest
NEIGHBOR
Na?ve
Bayes
RECURSIVE
partitioning
regression
trees
Random
Forest
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
农业科学与技术:B
双月刊
2161-6264
武汉洪山区卓刀泉北路金桥花园C座4楼
出版文献量(篇)
177
总下载数(次)
0
论文1v1指导