基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
近邻与稀疏保持投影已被广泛应用于降维方法,通过优化得到满足近邻结构或稀疏结构的降维投影矩阵,然而这类方法多数只考虑单一结构特征.此外,多数非线性降维方法无法求出显式的映射函数,极大地限制了降维方法的应用.为克服这些问题,本文借鉴极限学习机的思想,提出面向聚类的基于稀疏和近邻保持的极限学习机降维算法(SNP-ELM).SNP-ELM算法是一种非线性无监督降维方法,在降维过程中同时考虑数据的稀疏结构与近邻结构.在人造数据、Wine数据和6个基因表达数据上进行实验,实验结果表明该算法优于其他降维方法.
推荐文章
基于并行学习的多层极限学习机
神经网络
稀疏编码
极限学习机
并行学习
基于极限学习机的迁移学习算法
迁移学习
极限学习机
三维模型分类
基于粒子群优化算法的最优极限学习机
粒子群算法
极限学习机
隐层节点
基于SDAE及极限学习机模型的协同过滤应用研究
推荐系统
协同过滤
深度学习
降噪自编码器
稀疏编码
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于稀疏和近邻保持的极限学习机降维
来源期刊 自动化学报 学科
关键词 极限学习机 近邻表示 稀疏表示 降维
年,卷(期) 2019,(2) 所属期刊栏目 论文与报告
研究方向 页码范围 325-333
页数 9页 分类号
字数 6975字 语种 中文
DOI 10.16383/j.aas.2018.c170216
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈晓云 福州大学数学与计算机科学学院 76 590 13.0 21.0
2 廖梦真 福州大学数学与计算机科学学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (63)
共引文献  (48)
参考文献  (11)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(5)
  • 参考文献(1)
  • 二级参考文献(4)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(8)
  • 参考文献(2)
  • 二级参考文献(6)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(8)
  • 参考文献(0)
  • 二级参考文献(8)
2014(9)
  • 参考文献(1)
  • 二级参考文献(8)
2015(6)
  • 参考文献(3)
  • 二级参考文献(3)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
极限学习机
近邻表示
稀疏表示
降维
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报
月刊
0254-4156
11-2109/TP
大16开
北京市海淀区中关村东路95号(北京2728信箱)
2-180
1963
chi
出版文献量(篇)
4124
总下载数(次)
26
总被引数(次)
120705
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导