基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了保证路面质量和行人与驾驶员的安全,提出了一种利用传感器时序多变量信号数据进行路面异常检测的算法.针对行驶过程中需要结合多种传感器信号在不同尺度对路面特征进行分析的问题,提出结合小波卷积网络和多通道网络技术,实现路面异常检测.首先,在多级小波变换间加入卷积神经元网络,从多个尺度分析单个传感器信号的局部连续性;然后,构建多通道神经网络,将多个传感器信号分别作为不同通道的输入,计算多个信号相结合的特征向量;最后,使用多层感知机根据多通道小波网络的输出实现路面异常检测.实验结果表明,该检测算法相对于传统的时间序列分类方法,同时考虑了多尺度分析、信号局部连续性和多变量信号的结合,在分析多变量时序信号数据时,具有更低的误检率和漏检率,更高的F1值.
推荐文章
基于卷积神经网络的乳腺疾病检测算法
卷积神经网络
特征融合
空间金字塔池化
尺度无关
乳腺疾病检测
尺度无关的级联卷积神经网络人脸检测算法
级联卷积神经网络
空间金字塔池化
人脸检测
基于卷积神经网络的图像检测识别算法综述
卷积神经网络
图像检测
图像识别
小波神经网络和B-QPSO算法在Ad Hoc异常检测中的应用
Ad Hoc无线网络
小波神经网络
B-QPSO算法
QPSO算法
梯度下降法
PSO算法
异常检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多通道小波卷积神经网络的路面异常检测算法
来源期刊 华中师范大学学报(自然科学版) 学科 交通运输
关键词 小波变换 卷积神经元网络 多变量时间序列 时间序列分类
年,卷(期) 2019,(2) 所属期刊栏目
研究方向 页码范围 200-206
页数 7页 分类号 U416.06
字数 5910字 语种 中文
DOI 10.19603/j.cnki.1000-1190.2019.02.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李博 北京邮电大学信息与通信工程学院 7 59 3.0 7.0
2 张洪刚 北京邮电大学信息与通信工程学院 18 295 12.0 17.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (5)
共引文献  (5)
参考文献  (8)
节点文献
引证文献  (2)
同被引文献  (23)
二级引证文献  (0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
小波变换
卷积神经元网络
多变量时间序列
时间序列分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华中师范大学学报(自然科学版)
双月刊
1000-1190
42-1178/N
大16开
武汉市武昌桂子山
38-39
1955
chi
出版文献量(篇)
3391
总下载数(次)
5
总被引数(次)
18993
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导