基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
网络发展势头迅猛,网络安全问题成为当今互联网时代的重中之重.本文提出将隐马尔可夫模型应用到流量异常检测中,用统计学的方法来对流量进行分类.从网络层面着手,将数据包中提取到的一些像IP等的属性特征经处理后输入到隐马尔可夫模型(HMM)中进行分类,最后通过模型输出概率值来判断流量的正常异常类型.在模型训练阶段,我们创造性地使用条件熵来优化Baum-Welch参数估计算法,减少了模型的训练的时间.从实验结果和分析比较来看,本文提出的检测方法在检测准确率和效率上都取得了良好的效果.
推荐文章
基于隐马尔可夫模型的程序行为异常检测
入侵检测
隐马尔可夫模型
异常检测
系统调用
基于隐马尔可夫的系统入侵检测方法
入侵检测
异常检测
隐马尔可夫模型(HMM)
基于两层隐马尔可夫模型的入侵检测方法
入侵检测
系统调用
进程堆栈
函数返回地址
不定长序列模式
两层隐马尔可夫模型
基于马尔可夫模型的临床序列异常检测
异常检测
马尔可夫模型
编辑距离
序列相似匹配
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于隐马尔可夫模型和条件熵的异常流量检测方法研究
来源期刊 天津理工大学学报 学科 工学
关键词 流量异常检测 HMM 条件熵 改进的Baum-Welch算法
年,卷(期) 2019,(5) 所属期刊栏目
研究方向 页码范围 18-22,28
页数 6页 分类号 TP393.0
字数 4327字 语种 中文
DOI 10.3969/j.issn.1673-095X.2019.05.004
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王怀彬 天津理工大学计算机科学与工程学院 41 139 7.0 10.0
2 肖林英 天津理工大学计算机科学与工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
流量异常检测
HMM
条件熵
改进的Baum-Welch算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
天津理工大学学报
双月刊
1673-095X
12-1374/N
大16开
天津市西青区宾水西道391号
1984
chi
出版文献量(篇)
2405
总下载数(次)
4
总被引数(次)
13943
论文1v1指导