图像分割是计算机视觉中基础且重要的一个问题.熵阈值图像分割作为一种有效的分割方法,被广泛应用于模式识别和图像处理中.传统的图像分割方法并不能获得足够有效的图像特征.为解决这个问题且进一步探究熵阈值在图像分割中的应用,引入一种GLLE(Gray Level and Local Entropy)二维直方图改进熵阈值图像分割模型,并提出了基于模糊熵的方法计算所建立的二维直方图模型.通过标准实验数据集上的对比实验表明,基于模糊熵的GLLE熵阈值分割方法可以得到更加准确的阈值,提高了分割精度.同时在处理不同类型图像的表现上优于往常的算法,具有更强的鲁棒性.