钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
基础科学期刊
\
大学学报期刊
\
南京师大学报(自然科学版)期刊
\
基于聚类核的核极速学习机
基于聚类核的核极速学习机
作者:
丁世飞
王丽娟
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
极速学习机
k均值聚类
Bagged聚类核
RBF核函数
摘要:
传统的神经网络学习算法(如BP算法)需要调整大量的网络参数,例如输入权值以及隐层单元的偏置,而极速学习机只需要设置网络的隐层节点个数,在算法执行过程中不需要调整网络的输入权值,便可以产生唯一的最优解,因此它具有学习速度快且泛化性能好的优点.随着极速学习机的研究发展,核极速学习机的相关理论被提出.核极速学习机是将核函数引入到极速学习机中,可以得到最小二乘解,具有更稳定的泛化性能.本文在核极速学习机的基础上提出了一种基于Bagged聚类核的核极速学习机的分类方法,首先对已有的标记样本和所有的无标记样本采用多次k均值聚类,去构造Bagged聚类核,然后对Bagged聚类核和径向基核进行求和,最终用于核极速学习机的训练中.与传统核极速学习机相比,本文提出的方法可以使用所有的无标记样本,从而尽可能地提高分类的准确率.最后本文通过实验验证了方法的可行性.
暂无资源
收藏
引用
分享
推荐文章
基于核的学习机研究综述
核方法
有监督学习算法
无监督学习算法
支持向量机
小波核极限学习机分类器
极限学习机
核学习机
小波分析
小波核函数
分类器
基于Universum学习的核聚类方法
Universum学习
核聚类
先验知识
基于模糊核聚类的多类支持向量机
支持向量机
多类分类
模糊核
二叉树
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
基于聚类核的核极速学习机
来源期刊
南京师大学报(自然科学版)
学科
工学
关键词
极速学习机
k均值聚类
Bagged聚类核
RBF核函数
年,卷(期)
2019,(3)
所属期刊栏目
全国机器学习会议论文专栏
研究方向
页码范围
145-150
页数
6页
分类号
TP3
字数
4068字
语种
中文
DOI
10.3969/j.issn.1001-4616.2019.03.019
五维指标
作者信息
序号
姓名
单位
发文数
被引次数
H指数
G指数
1
丁世飞
中国矿业大学计算机科学与技术学院
83
2735
17.0
52.0
2
王丽娟
中国矿业大学计算机科学与技术学院
19
16
2.0
3.0
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(30)
共引文献
(148)
参考文献
(12)
节点文献
引证文献
(1)
同被引文献
(1)
二级引证文献
(0)
1991(1)
参考文献(0)
二级参考文献(1)
1993(1)
参考文献(0)
二级参考文献(1)
1994(1)
参考文献(0)
二级参考文献(1)
1997(1)
参考文献(0)
二级参考文献(1)
1998(2)
参考文献(0)
二级参考文献(2)
2000(2)
参考文献(0)
二级参考文献(2)
2002(1)
参考文献(0)
二级参考文献(1)
2003(2)
参考文献(0)
二级参考文献(2)
2005(3)
参考文献(1)
二级参考文献(2)
2006(5)
参考文献(1)
二级参考文献(4)
2007(4)
参考文献(0)
二级参考文献(4)
2008(5)
参考文献(0)
二级参考文献(5)
2009(6)
参考文献(2)
二级参考文献(4)
2010(1)
参考文献(1)
二级参考文献(0)
2012(1)
参考文献(1)
二级参考文献(0)
2013(1)
参考文献(1)
二级参考文献(0)
2014(2)
参考文献(2)
二级参考文献(0)
2015(1)
参考文献(1)
二级参考文献(0)
2016(2)
参考文献(2)
二级参考文献(0)
2019(0)
参考文献(0)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
2020(1)
引证文献(1)
二级引证文献(0)
研究主题发展历程
节点文献
极速学习机
k均值聚类
Bagged聚类核
RBF核函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京师大学报(自然科学版)
主办单位:
南京师范大学
出版周期:
季刊
ISSN:
1001-4616
CN:
32-1239/N
开本:
大16开
出版地:
南京市宁海路122号南京师范大学
邮发代号:
创刊时间:
1955
语种:
chi
出版文献量(篇)
2319
总下载数(次)
4
总被引数(次)
17979
期刊文献
相关文献
1.
基于核的学习机研究综述
2.
小波核极限学习机分类器
3.
基于Universum学习的核聚类方法
4.
基于模糊核聚类的多类支持向量机
5.
基于多分类投影极速学习机的快速人脸识别方法
6.
基于核聚类的K-均值聚类
7.
基于支持向量机的改进高斯核函数聚类算法研究
8.
基于一种混合核函数的支持向量机聚类
9.
基于模糊核聚类和主动学习的异常检测方法
10.
基于核极限学习机的快速主动学习方法及其软测量应用
11.
基于空谱特征的核极端学习机高光谱遥感图像分类算法
12.
基于一种新的核聚类方法生成RBF核的支持向量机
13.
基于核的自组织映射聚类
14.
一种基于聚类核的半监督支持向量机分类方法
15.
一种鲁棒非平衡极速学习机算法
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
力学
化学
地球物理学
地质学
基础科学综合
大学学报
天文学
天文学、地球科学
数学
气象学
海洋学
物理学
生物学
生物科学
自然地理学和测绘学
自然科学总论
自然科学理论与方法
资源科学
非线性科学与系统科学
南京师大学报(自然科学版)2022
南京师大学报(自然科学版)2021
南京师大学报(自然科学版)2020
南京师大学报(自然科学版)2019
南京师大学报(自然科学版)2018
南京师大学报(自然科学版)2017
南京师大学报(自然科学版)2016
南京师大学报(自然科学版)2015
南京师大学报(自然科学版)2014
南京师大学报(自然科学版)2013
南京师大学报(自然科学版)2012
南京师大学报(自然科学版)2011
南京师大学报(自然科学版)2010
南京师大学报(自然科学版)2009
南京师大学报(自然科学版)2008
南京师大学报(自然科学版)2007
南京师大学报(自然科学版)2006
南京师大学报(自然科学版)2005
南京师大学报(自然科学版)2004
南京师大学报(自然科学版)2003
南京师大学报(自然科学版)2002
南京师大学报(自然科学版)2001
南京师大学报(自然科学版)2000
南京师大学报(自然科学版)1999
南京师大学报(自然科学版)2019年第4期
南京师大学报(自然科学版)2019年第3期
南京师大学报(自然科学版)2019年第2期
南京师大学报(自然科学版)2019年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号