基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的神经网络学习算法(如BP算法)需要调整大量的网络参数,例如输入权值以及隐层单元的偏置,而极速学习机只需要设置网络的隐层节点个数,在算法执行过程中不需要调整网络的输入权值,便可以产生唯一的最优解,因此它具有学习速度快且泛化性能好的优点.随着极速学习机的研究发展,核极速学习机的相关理论被提出.核极速学习机是将核函数引入到极速学习机中,可以得到最小二乘解,具有更稳定的泛化性能.本文在核极速学习机的基础上提出了一种基于Bagged聚类核的核极速学习机的分类方法,首先对已有的标记样本和所有的无标记样本采用多次k均值聚类,去构造Bagged聚类核,然后对Bagged聚类核和径向基核进行求和,最终用于核极速学习机的训练中.与传统核极速学习机相比,本文提出的方法可以使用所有的无标记样本,从而尽可能地提高分类的准确率.最后本文通过实验验证了方法的可行性.
推荐文章
基于核的学习机研究综述
核方法
有监督学习算法
无监督学习算法
支持向量机
小波核极限学习机分类器
极限学习机
核学习机
小波分析
小波核函数
分类器
基于Universum学习的核聚类方法
Universum学习
核聚类
先验知识
基于模糊核聚类的多类支持向量机
支持向量机
多类分类
模糊核
二叉树
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于聚类核的核极速学习机
来源期刊 南京师大学报(自然科学版) 学科 工学
关键词 极速学习机 k均值聚类 Bagged聚类核 RBF核函数
年,卷(期) 2019,(3) 所属期刊栏目 全国机器学习会议论文专栏
研究方向 页码范围 145-150
页数 6页 分类号 TP3
字数 4068字 语种 中文
DOI 10.3969/j.issn.1001-4616.2019.03.019
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 丁世飞 中国矿业大学计算机科学与技术学院 83 2735 17.0 52.0
2 王丽娟 中国矿业大学计算机科学与技术学院 19 16 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (30)
共引文献  (148)
参考文献  (12)
节点文献
引证文献  (1)
同被引文献  (1)
二级引证文献  (0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(6)
  • 参考文献(2)
  • 二级参考文献(4)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
极速学习机
k均值聚类
Bagged聚类核
RBF核函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京师大学报(自然科学版)
季刊
1001-4616
32-1239/N
大16开
南京市宁海路122号南京师范大学
1955
chi
出版文献量(篇)
2319
总下载数(次)
4
总被引数(次)
17979
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导