基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
近年来随着"IP"热潮兴起,网络文学市场发展迅速,逐渐成为文化娱乐行业投资热点.本文将机器学习方法引入到小说排行预测方面,通过网络爬虫获取网络小说信息并提取了影响排行的特征,提出了基于BP神经网络模型进行小说排行预测.针对训练数据的不均衡,本文采用ROC和AUC作为预测评价指标;实验结果表明,基于BP神经网络的网络小说排行预测的准确率较高,相比传统的文学定性分析方法,机器学习预测方法可解释性和应用性更高.
推荐文章
基于BP神经网络技术的网络时延预测研究
时延预测
基函数中心
Matlab仿真
BP神经网络
基于BP神经网络预测混凝土强度
BP神经网络
混凝土
预测
抗压强度
基于BP神经网络对NMR的预测模型
1H NMR和13C NMR
神经网络
BP算法
预测模型
基于BP神经网络的表面硬度预测模型
BP神经网络
激光相变硬化
扫描参数
预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BP神经网络的网络小说排行预测
来源期刊 四川大学学报(自然科学版) 学科 工学
关键词 "IP"热潮 小说排行预测 BP神经网络 网络爬虫 ROC曲线 AUC值
年,卷(期) 2019,(1) 所属期刊栏目 计算机科学
研究方向 页码范围 50-56
页数 7页 分类号 TP391
字数 5043字 语种 中文
DOI 10.3969/j.issn.0490-6756.2019.01.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李旭伟 四川大学计算机学院 45 272 9.0 15.0
2 郭峻铭 四川大学计算机学院 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (92)
共引文献  (52)
参考文献  (11)
节点文献
引证文献  (4)
同被引文献  (17)
二级引证文献  (1)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(4)
  • 参考文献(0)
  • 二级参考文献(4)
1989(4)
  • 参考文献(0)
  • 二级参考文献(4)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(10)
  • 参考文献(0)
  • 二级参考文献(10)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(10)
  • 参考文献(0)
  • 二级参考文献(10)
2014(8)
  • 参考文献(1)
  • 二级参考文献(7)
2015(7)
  • 参考文献(2)
  • 二级参考文献(5)
2016(13)
  • 参考文献(1)
  • 二级参考文献(12)
2017(6)
  • 参考文献(4)
  • 二级参考文献(2)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(4)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(3)
  • 二级引证文献(1)
2019(4)
  • 引证文献(3)
  • 二级引证文献(1)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
"IP"热潮
小说排行预测
BP神经网络
网络爬虫
ROC曲线
AUC值
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
四川大学学报(自然科学版)
双月刊
0490-6756
51-1595/N
大16开
成都市九眼桥望江路29号
62-127
1955
chi
出版文献量(篇)
5772
总下载数(次)
10
总被引数(次)
25503
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导