基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
准确的机票低价预测有助于民航需求与供给的灵活对接及民航资源的充分利用.机票价格波动性大、随机性强、易受到诸多因素的影响,使得机票价格预测成为了一个极具挑战的问题.充分考虑机票价格自身特点,设计了二维“机票价格时间片”结构,并基于时间片充分挖掘、利用机票价格数据的规律与关系,设计了以卷积神经网络为核心的两阶段机票价格预测模型,对未来机票最低价格进行预测.在某在线订票网站的真实价格数据集上进行了验证,并与4种流行的基准模型进行了对比.结果表明:本文的方法明显优于其他模型,MAE效果提升了13.67%,MAPE数值降低了1.52%.
推荐文章
基于卷积神经网络的横向转角预测方法
转角预测
卷积神经网络
数据处理
周围环境探测
网络训练
结果分析
基于卷积神经网络的发动机故障预测方法
故障预测
深度学习
卷积神经网络(CNN)
发动机
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
基于深度卷积神经网络的交通流量预测数学模型设计
交通流量预测
智能交通
数学模型
深度神经网络
预测精度
仿真实验
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的机票低价预测
来源期刊 北京交通大学学报 学科 工学
关键词 深度学习 机票低价预测 卷积神经网络 价格序列
年,卷(期) 2019,(5) 所属期刊栏目 智慧交通和数据挖掘
研究方向 页码范围 1-9
页数 9页 分类号 TP183
字数 6255字 语种 中文
DOI 10.11860/j.issn.1673-0291.20180137
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 林友芳 北京交通大学计算机与信息技术学院 29 139 5.0 11.0
3 武志昊 北京交通大学计算机与信息技术学院 8 14 2.0 3.0
5 郭晟楠 北京交通大学计算机与信息技术学院 2 0 0.0 0.0
8 蒋鹏 北京交通大学计算机与信息技术学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (13)
共引文献  (5)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
机票低价预测
卷积神经网络
价格序列
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
北京交通大学学报
双月刊
1673-0291
11-5258/U
大16开
北京西直门外上园村3号
1975
chi
出版文献量(篇)
3626
总下载数(次)
7
总被引数(次)
38401
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导