基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
人脸识别是近年来模式识别领域的热门课题,其中特征提取和分类器选择是人脸识别的关键步骤.主成分分析和线性判别分析是特征提取的主要方法之一,但主成分分析忽略了数据的类别信息,线性判别分析类内散度矩阵奇异,导致投影矩阵无法直接得出.为解决以上问题,本文提出基于PCA_LDA和协同表示人脸识别算法,该算法结合主成分分析和线性判别分析,将人脸的特征信息压缩到一个更小的子空间内,再采用协同表示分类算法对测试图像进行识别.在ORL人脸库、FERET人脸库和YALE人脸库上的大量实验证实,本文算法能精确地提取到高维图像信息的主要特征,在保留特征信息的同时,大大减小了计算的复杂度.而且相比其它几种典型算法,本文算法具有更高的识别率和更健壮的抗干扰性能.
推荐文章
基于2D-PCA和2D-LDA的人脸识别方法
人脸识别
二维主分量分析
二维线性可分性分析
分类器融合
基于LDA算法的人脸识别方法的比较研究
线性判别分析(LDA)
人脸识别
Eigenfaces
Fisherfaces
小样本问题
基于SIFT稀疏表示的人脸识别算法
人脸识别
尺度不变特征变换
FisherVector
主成分分析
稀疏表示
基于虚拟样本的协同表示人脸识别算法
人脸识别
协同表示
虚拟样本
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PCA_LDA和协同表示分类的人脸识别算法
来源期刊 燕山大学学报 学科 工学
关键词 人脸识别 主成分分析 线性判别分析 协同表示分类
年,卷(期) 2019,(2) 所属期刊栏目 信息与计算机技术
研究方向 页码范围 176-181
页数 6页 分类号 TP391
字数 4995字 语种 中文
DOI 10.3969/j.issn.1007-791X.2019.02.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 聂栋栋 燕山大学理学院 22 73 5.0 7.0
2 贺悦悦 燕山大学理学院 2 6 2.0 2.0
3 马勤勇 燕山大学信息科学与工程学院 18 150 5.0 12.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (37)
共引文献  (22)
参考文献  (9)
节点文献
引证文献  (4)
同被引文献  (21)
二级引证文献  (0)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(4)
  • 参考文献(2)
  • 二级参考文献(2)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(4)
  • 引证文献(4)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人脸识别
主成分分析
线性判别分析
协同表示分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
燕山大学学报
双月刊
1007-791X
13-1219/N
大16开
河北省秦皇岛市河北大街西段438号
18-73
1963
chi
出版文献量(篇)
2254
总下载数(次)
2
总被引数(次)
12529
论文1v1指导