基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In this study,machine learning representation is introduced to evaluate the flexoelectricity effect in truncated pyramid nanostructure under compression.A Non-Uniform Rational B-spline(NURBS)based IGA formulation is employed to model the flexoelectricity.We investigate 2D system with an isotropic linear elastic material under plane strain conditions discretized by 45×30 grid of B-spline elements.Six input parameters are selected to construct a deep neural network(DNN)model.They are the Young's modulus,two dielectric permittivity constants,the longitudinal and transversal flexoelectric coefficients and the order of the shape function.The outputs of interest are the strain in the stress direction and the electric potential due flexoelectricity.The dataset are generated from the forward analysis of the flexoelectric model.80%of the dataset is used for training purpose while the remaining is used for validation by checking the mean squared error.In addition to the input and output layers,the developed DNN model is composed of four hidden layers.The results showed high predictions capabilities of the proposed method with much lower computational time in comparison to the numerical model.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
基于GPU实现SlideShow中的effect和transition
图像处理器
Direct3D
SlideShow
固定功能流水线
可编程流水线
高级渲染语言
顶点渲染
像素渲染
The effect of pH on the sorption of gold nanoparticles on illite
Gold nanoparticles
Illite
Sorption
Charge
Electrostatic interaction
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Computational Machine Learning Representation for the Flexoelectricity Effect in Truncated Pyramid Structures
来源期刊 计算机、材料和连续体(英文) 学科 数学
关键词 FLEXOELECTRICITY Isogeometric analysis Machine learning prediction deep NEURAL networks
年,卷(期) 2019,(4) 所属期刊栏目
研究方向 页码范围 79-87
页数 9页 分类号 O17
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
FLEXOELECTRICITY
Isogeometric
analysis
Machine
learning
prediction
deep
NEURAL
networks
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机、材料和连续体(英文)
月刊
1546-2218
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
346
总下载数(次)
4
总被引数(次)
0
论文1v1指导