In dealing with high-dimensional data, such as the global climate model, facial data analysis, human gene distribution and so on, the problem of dimensionality reduction is often encountered, that is, to find the low dimensional structure hidden in high-dimensional data. Nonlinear dimensionality reduction facilitates the discovery of the intrinsic structure and relevance of the data and can make the high-dimensional data visible in the low dimension. The isometric mapping algorithm (Isomap) is an important algorithm for nonlinear dimensionality reduction, which originates from the traditional dimensionality reduction algorithm MDS. The MDS algorithm is based on maintaining the distance between the samples in the original space and the distance between the samples in the lower dimensional space;the distance used here is Euclidean distance, and the Isomap algorithm discards the Euclidean distance, and calculates the shortest path between samples by Floyd algorithm to approximate the geodesic distance along the manifold surface. Compared with the previous nonlinear dimensionality reduction algorithm, the Isomap algorithm can effectively compute a global optimal solution, and it can ensure that the data manifold converges to the real structure asymptotically.