基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
实时、有效的交通预测有助于对城市交通流进行精细化管控,从而提升交通运行效率和城市品质.在分析交通流数据特性的基础上,提出一种基于栈式自编码神经网络的预测模型,该模型根据交通流时空关联特性构建多维度特征变量,经栈式自编码器进行数据重构,利用神经网络完成预测.结合北京市二环快速路的微波数据进行实例验证,结果表明该模型方法比传统的BP神经网络和支持向量机具有更好的预测精度.
推荐文章
基于时空图网络的空中交通流量预测研究
空中交通预测
时序预测
图表示
Transformer方法
时空依赖关系
基于深度学习的短时交通流预测
交通流预测
深度学习
短时交通流
支持向量回归
基于Spark的分布式交通流数据预测系统
交通流预测
分布式计算
Spark平台
梯度优化决策树模型
基于差分数据图和深度学习的短时交通流预测
交通流量预测
卷积神经网络
支持向量回归
数据差分
交通数据图
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于时空数据驱动的交通流预测
来源期刊 交通与运输 学科 交通运输
关键词 交通流预测 时空数据 关联分析 栈式自编码器
年,卷(期) 2019,(z1) 所属期刊栏目 交通模型
研究方向 页码范围 75-80
页数 6页 分类号 U491
字数 4607字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 蒋金勇 8 41 3.0 6.0
2 何龙庆 4 8 1.0 2.0
3 陈伦 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (95)
共引文献  (345)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(4)
  • 参考文献(0)
  • 二级参考文献(4)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(3)
  • 参考文献(1)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(7)
  • 参考文献(1)
  • 二级参考文献(6)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(7)
  • 参考文献(1)
  • 二级参考文献(6)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(9)
  • 参考文献(0)
  • 二级参考文献(9)
2011(10)
  • 参考文献(1)
  • 二级参考文献(9)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(6)
  • 参考文献(2)
  • 二级参考文献(4)
2014(4)
  • 参考文献(2)
  • 二级参考文献(2)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
交通流预测
时空数据
关联分析
栈式自编码器
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
交通与运输
双月刊
1671-3400
31-1476/U
大16开
上海市汉口路193号324室
4-754
1985
chi
出版文献量(篇)
6248
总下载数(次)
9
总被引数(次)
10824
论文1v1指导