基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
首先采用LM神经网络模型对风电功率进行预测,为确定神经网络最佳权值和阈值、避免出现局部最优,采用蚁群算法进行优化;之后通过风速的预测值确定了预测精度低的时间点,并利用风电功率特性曲线进一步预测这些时间点的风电功率;最后采用均方误差、准确率、合格率指标对预测结果进行了定量分析,结果表明基于蚁群优化神经网络模型的预测准确度提高了16.272百分点,合格率提高了18.735百分点,均方误差降低了3.117.
推荐文章
基于风速融合和NARX神经网络的短期风电功率预测
短期风电功率预测
预测模型
NARX神经网络
风速融合
数据融合
数据处理
BP神经网络的分层优化研究及其在风电功率预测中的应用
神经网络
分层优化
灰色模型
遗传算法
蚁群算法
风电功率预测
基于Elman神经网络模型的短期光伏发电功率预测
光伏发电
功率预测
相似日
Elman神经网络
基于蚁群算法优化BP神经网络的政务云网络态势预测研究
政务云
主动防御
BP神经网络
蚁群算法
态势预测
预测精度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于蚁群优化神经网络模型的风电功率预测
来源期刊 内蒙古电力技术 学科 工学
关键词 LM神经网络 蚁群算法 风机特性曲线 训练数据 风速
年,卷(期) 2019,(4) 所属期刊栏目 综合能源系统规划与运行
研究方向 页码范围 26-30
页数 5页 分类号 TM614
字数 3682字 语种 中文
DOI 10.3969/j.issn.1008-6218.2019.04.016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张岩 华北理工大学数学建模创新实验室 38 120 6.0 9.0
5 李洋博 华北理工大学数学建模创新实验室 7 6 2.0 2.0
9 柳姗 华北理工大学数学建模创新实验室 4 3 1.0 1.0
13 王月 华北理工大学数学建模创新实验室 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (21)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(7)
  • 参考文献(1)
  • 二级参考文献(6)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
LM神经网络
蚁群算法
风机特性曲线
训练数据
风速
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
内蒙古电力技术
双月刊
1008-6218
15-1200/TM
大16开
呼和浩特市锡林南路21号
1983
chi
出版文献量(篇)
3709
总下载数(次)
9
总被引数(次)
9434
论文1v1指导