作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高变压器的动态可靠性,通过建立变压器模型,利用ANSYS软件对其进行仿真,得到了不同环境温度和负载电流匹配下的变压器顶层油温值,并分析了其变化规律;基于GA-BP神经网络预测了其他工况下顶层油温值;将虚拟样机技术与GA-BP神经网络结合,为变压器运行可靠性预测提供了一种全新理念和便捷方法,分析结果为变压器结构设计及其热特性研究提供参考.
推荐文章
基于Python技术GA-BP神经网络的变压器故障诊断研究
变压器
Python
GA-BP神经网络
故障诊断
基于GA-BP神经网络的电力系统负荷预测研究
电力系统
负荷预测
BP神经网络
遗传算法
GA-BP
基于GA-BP神经网络算法的马铃薯晚疫病预测模型
马铃薯晚疫病
遗传算法
BP神经网络
归一化处理
基于GA-BP神经网络的粗粒土渗透系数预测
粗粒土
渗透系数
BP神经网络
遗传算法
孔隙比
级配
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于VP与GA-BP神经网络的变压器运行温度预测
来源期刊 电气化铁道 学科 交通运输
关键词 变压器 虚拟样机技术 GA-BP神经网络 顶层油温 预测
年,卷(期) 2019,(z1) 所属期刊栏目 供变电远动
研究方向 页码范围 114-118
页数 5页 分类号 U224.2+2
字数 3516字 语种 中文
DOI 10.19587/j.cnki.1007-936x.2019z.029
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周文潮 中铁电气工业有限公司保定铁道变压器分公司 3 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (86)
共引文献  (112)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(6)
  • 参考文献(0)
  • 二级参考文献(6)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(8)
  • 参考文献(0)
  • 二级参考文献(8)
2006(8)
  • 参考文献(0)
  • 二级参考文献(8)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(8)
  • 参考文献(0)
  • 二级参考文献(8)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(5)
  • 参考文献(3)
  • 二级参考文献(2)
2017(3)
  • 参考文献(0)
  • 二级参考文献(3)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(1)
2020(2)
  • 参考文献(0)
  • 二级参考文献(2)
2019(1)
  • 参考文献(0)
  • 二级参考文献(1)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
变压器
虚拟样机技术
GA-BP神经网络
顶层油温
预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电气化铁道
双月刊
1007-936X
11-2701/U
大16开
北京万寿路南口金家村1号
82-845
1990
chi
出版文献量(篇)
2126
总下载数(次)
1
论文1v1指导