作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在手势识别的过程中,手势的多样性和复杂程度会对手势识别率造成很大的影响.随着深度学习的快速发展,卷积神经网络在手势识别领域取得了突破性进展.但基于卷积神经网络的方法仍存在收敛速度慢、识别率低等问题,因此手势识别很难取得较好成果.为了解决卷积神经网络在手势识别中存在的收敛速度慢、识别率低问题,提出一种AE-CNN的手势识别算法.实验结果表明,该算法收敛速度快、识别准确率高,并且没有明显增加识别过程的耗时性.
推荐文章
基于改进CNN与SVM的手势识别研究
手势识别
CNN
SVM
特征提取
图像分割
数据增强
基于深度学习的手势识别算法设计
深度学习
卷积神经网络
实时手势识别
高效性
基于SURF特征跟踪的动态手势识别算法
动态手势识别
加速鲁棒特征
特征跟踪
动态手势模型
复杂背景下基于深度学习的手势识别
手势识别
复杂背景
手势检测
深度学习
人机交互
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于AE-CNN的手势识别算法
来源期刊 计算机应用与软件 学科 工学
关键词 手势识别 卷积神经网络 深度学习
年,卷(期) 2019,(11) 所属期刊栏目 人工智能与识别
研究方向 页码范围 157-160,167
页数 5页 分类号 TP391
字数 3141字 语种 中文
DOI 10.3969/j.issn.1000-386x.2019.11.026
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 任芳 陕西师范大学数学与信息科学学院 13 46 3.0 6.0
2 付优 山西建筑职业技术学院计算机工程系 7 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (35)
共引文献  (250)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(7)
  • 参考文献(2)
  • 二级参考文献(5)
2017(4)
  • 参考文献(1)
  • 二级参考文献(3)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
手势识别
卷积神经网络
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
总被引数(次)
101489
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导