作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
受经济利益驱使,大量恶意用户发布包含不实内容的虚假评论以影响用户的购买决策,从而提高自身商品的销售业绩并打压竞争对手,严重扰乱电子商务运营秩序.为此,介绍虚假评论识别的研究成果,包括虚假评论内容、发布者及虚假评论者群组的识别,对识别过程所使用的特征及检测方法进行对比分析,并给出虚假评论识别效果的评价方式和指标.在此基础上,对未来虚假评论识别研究工作进行探讨和展望.
推荐文章
基于情感极性与SMOTE过采样的虚假评论识别方法
虚假评论
情感极性
用户行为
逻辑回归
随机森林
融合用户和商品评论的双通道CNN推荐算法
CNN推荐算法
推荐系统
特征提取
文本矢量化
抽象特征映射
评分预测
垃圾商品评论检测研究综述
垃圾商品评论
文本特征
行为特征
评论数据集
在线商品评论有用性影响因素研究
在线评论
有用性
影响因素
预测模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 虚假商品评论识别的研究与进展
来源期刊 计算机工程 学科 工学
关键词 虚假评论 恶意用户 群组检测 机器学习 评价指标
年,卷(期) 2019,(10) 所属期刊栏目 开发研究与工程应用
研究方向 页码范围 293-300
页数 8页 分类号 TP391
字数 8360字 语种 中文
DOI 10.19678/j.issn.1000-3428.0052714
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张璐 南京财经大学信息工程学院 6 28 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (84)
共引文献  (77)
参考文献  (14)
节点文献
引证文献  (1)
同被引文献  (15)
二级引证文献  (0)
1936(1)
  • 参考文献(0)
  • 二级参考文献(1)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(2)
  • 参考文献(0)
  • 二级参考文献(2)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(6)
  • 参考文献(1)
  • 二级参考文献(5)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(12)
  • 参考文献(0)
  • 二级参考文献(12)
2009(8)
  • 参考文献(0)
  • 二级参考文献(8)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(6)
  • 参考文献(2)
  • 二级参考文献(4)
2013(8)
  • 参考文献(1)
  • 二级参考文献(7)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(5)
  • 参考文献(3)
  • 二级参考文献(2)
2016(4)
  • 参考文献(4)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
虚假评论
恶意用户
群组检测
机器学习
评价指标
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导