作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着当代经济的不断发展,金融市场已经成为经济发展的重要部分,而股票市场作为金融市场的重要组成部分,便与国民经济密切相关.对于投资者而言,如何及时了解价格波动从而准确分析股票市场行情,是决策过程中的一个关键问题;对于股票市场的管理者来说,如何把握股市动态,从而营造稳定健康的交易环境,也是一项非常艰巨的任务.因此,更好地了解股市的波动特征,以及从中探索某些规律,对我们学习金融理论和进行金融实践都具有重要的意义.本文以2009-2018年的沪深300指数为例,对ARIMA模型、ARCH模型和AR-GARCH模型进行拟合,比较其在股票价格走势上的优劣,再用通过检验的拟合模型对股价进行一个短期的预测.最后发现AR-GARCH模型对原序列有较好的拟合效果,并且获得了较为精确的预测结果.
推荐文章
基于DMD-LSTM模型的股票价格时间序列预测研究
动态模态分解
长短期记忆神经网络
模态特征
板块联动效应
市场背景
基于情感分析和GAN的股票价格预测方法
股票价格预测
情感分析
卷积神经网络
生成对抗网络
基于分型布朗运动的股票价格趋势预测
布朗运动
分型布朗运动
蒙特卡洛模拟
正态性检验
股票价格
数据多维处理LSTM股票价格预测模型
长短期记忆网络
股价预测
组合模型
萤火虫算法
最小二乘支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于时间序列的股票价格走势分析
来源期刊 现代营销 学科
关键词 时间序 ARIMA模型 ARCH模型 AR-GARCH模型
年,卷(期) 2019,(12) 所属期刊栏目 金融
研究方向 页码范围 58-59
页数 2页 分类号
字数 2831字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄旻浩 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
时间序
ARIMA模型
ARCH模型
AR-GARCH模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代营销
月刊
chi
出版文献量(篇)
21716
总下载数(次)
118
总被引数(次)
32227
论文1v1指导