原文服务方: 计算机应用研究       
摘要:
为提高对多种不同类型问题的优化性能,提出了一种基于和声搜索和教与学优化的混合优化算法(HHSTL).在不同的进化阶段,HHSTL算法依据种群活跃率及种群最优个体更新率动态地确定和声算法或教与学算法作为下一周期种群更新方式的比例,并在标准教与学算法中增加了“自学”策略来提高算法的全局寻优能力.对16个不同类型的Benchmark函数进行仿真,并与七种优秀算法进行结果比较及Wilcoxon秩和检验分析,结果表明HHSTL算法汲取了和声搜索和教与学优化算法的优点,具有求解精度高、稳定性好等特点,能够求解更多的较为复杂的优化问题.
推荐文章
和声搜索—分布估计混合算法求解多目标优化问题
多目标优化
和声搜索
分布估计
基于差分进化算法和NSGA-Ⅱ的混合算法
改进的DE-NSGAⅡ算法
拉丁超立方体抽样技术
剪枝方法
参数自适应策略
基于离散和声搜索与模拟退火的混合算法
旅行商问题
和声搜索
模拟退火
混合算法
混合离散和声搜索算法求解旅行商问题
和声搜索
旅行商问题
混合算法
分块学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 动态选择策略的和声教与学混合算法
来源期刊 计算机应用研究 学科
关键词 和声搜索 教与学优化 动态选择策略 “自学”策略
年,卷(期) 2019,(12) 所属期刊栏目 算法研究探讨
研究方向 页码范围 3679-3684
页数 6页 分类号 TP301.6
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2018.06.0399
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 拓守恒 陕西理工大学数学与计算机科学学院 55 591 12.0 22.0
2 雍龙泉 陕西理工大学数学与计算机科学学院 111 680 12.0 21.0
3 黎延海 陕西理工大学数学与计算机科学学院 27 79 5.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (31)
共引文献  (5)
参考文献  (14)
节点文献
引证文献  (1)
同被引文献  (3)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(5)
  • 参考文献(2)
  • 二级参考文献(3)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(5)
  • 参考文献(3)
  • 二级参考文献(2)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(7)
  • 参考文献(3)
  • 二级参考文献(4)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
和声搜索
教与学优化
动态选择策略
“自学”策略
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导