作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对模糊C均值聚类算法的入侵检测方法易陷入局部最优,受时间和空间复杂度约束,检测速率低并且使用原始数据集容易陷入"维度灾难"等问题,提出了一种基于自编码网络(AN)特征降维结合遗传算法(GA)优化模糊C均值算法的聚类模型(AN-GA-FCM).该模型采用多层限制玻尔兹曼机(RBM)将高维、非线性的数据双向映射到低维空间,建立高维空间到低维空间的自编码网络,进而使用自编码网络权值微调重构低维空间数据的最优高维表示.并利用遗传算法优化的FCM初始聚类中心,避免目标函数陷入局部最优.将得到的特征降维数据集通过GA-FCM进行分类并在KDD'99数据集上进行检测,通过与PCA,SVM,Softmax等传统算法的实验对比,结果表明,该模型具有较高的入侵检测准确率和较低的分类检测时间.
推荐文章
基于聚类和非对称自编码的低频攻击检测方法
低频攻击
入侵检测
高维网络
聚类分析
特征提取
分类识别
基于集成降噪自编码的在线网络入侵检测模型
网络安全
入侵检测
降噪自编码网络
CICIDS2017数据集
基于稀疏自编码特征聚类算法的图像窜改检测
稀疏自编码
K-means聚类算法
同图复制
块匹配
基于模糊聚类的Linux网络动态入侵检测
模糊聚类
相关数据集合
入侵检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于自编码网络和聚类的入侵检测技术
来源期刊 计算机技术与发展 学科 工学
关键词 模糊C均值 遗传算法 限制玻尔兹曼机 自编码网络 特征降维 双向映射
年,卷(期) 2019,(5) 所属期刊栏目 安全与防范
研究方向 页码范围 107-111
页数 5页 分类号 TP301.6
字数 4654字 语种 中文
DOI 10.3969/j.issn.1673-629X.2019.05.023
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 万良 贵州大学软件与理论研究所 37 125 6.0 8.0
2 周康 贵州大学计算机科学与技术学院 6 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (277)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(6)
  • 参考文献(0)
  • 二级参考文献(6)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(3)
  • 参考文献(2)
  • 二级参考文献(1)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(6)
  • 参考文献(1)
  • 二级参考文献(5)
2016(4)
  • 参考文献(2)
  • 二级参考文献(2)
2017(3)
  • 参考文献(1)
  • 二级参考文献(2)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
模糊C均值
遗传算法
限制玻尔兹曼机
自编码网络
特征降维
双向映射
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导