基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
数据采集与监视控制系统(SCADA)储存了风电机组大量的警报信号,这些警报信号对故障类型具有一定的指示作用.为了及时有效地检测出风电机组故障,提出一种基于低频SCADA警报信号和D-S证据理论的风电机组故障诊断方法.首先从维修记录中提取故障类型构建辨识框架,然后选取故障当天触发的所有警报信号作为证据源,最后基于改进的D-S理论进行信息融合实现故障诊断.验证结果表明,该方法可以实现风电机组故障的有效诊断,为风电机组故障诊断提供了一种新的思路.
推荐文章
基于灰色关联和D-S证据理论的感应电转子故障诊断
灰色关联
D-S证据理论
感应电机
转子故障诊断
决策级信息融合
基于LS-SVM和D-S证据理论的轴承故障诊断
信息融合
滚动轴承故障诊断
LS-SVM
D-S证据理论
基于D-S证据理论的齿轮箱故障诊断
D-S证据理论
BP神经网络
模糊识别
齿轮箱
基于D-S证据理论信息融合的故障诊断方法
信息处理技术
证据理论
信息融合
故障诊断
决策规则
状态监测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于警报信号和D-S证据理论的风电机组故障诊断
来源期刊 太阳能学报 学科 工学
关键词 风电机组 SCADA警报信号 D-S证据理论 贝叶斯定理 故障诊断
年,卷(期) 2019,(12) 所属期刊栏目
研究方向 页码范围 3613-3620
页数 8页 分类号 TM315
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 冯延晖 21 69 6.0 7.0
2 邱颖宁 22 70 6.0 7.0
3 叶春霖 2 9 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (45)
共引文献  (205)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(4)
  • 参考文献(1)
  • 二级参考文献(3)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(9)
  • 参考文献(1)
  • 二级参考文献(8)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(5)
  • 参考文献(2)
  • 二级参考文献(3)
2013(6)
  • 参考文献(1)
  • 二级参考文献(5)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(4)
  • 参考文献(2)
  • 二级参考文献(2)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
风电机组
SCADA警报信号
D-S证据理论
贝叶斯定理
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
太阳能学报
月刊
0254-0096
11-2082/TK
大16开
北京市海淀区花园路3号
2-165
1980
chi
出版文献量(篇)
7068
总下载数(次)
14
总被引数(次)
77807
论文1v1指导