基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
由于单一传感器获取的振动信号具有片面性,采用全矢谱信息融合技术对滚动轴承信号进行特征提取,并与KPCA模型和AR时序预测方法相结合进行故障预测.首先,采用全矢谱技术提取实验数据中的特征主振矢;然后,采用KPCA方法对得到的特征主振矢进行融合,消除数据冗余,并建立全矢KPCA监控模型;最后,将测试样本输入全矢KPCA监控模型并输出T2和SPE统计量,将其值作为AR预测模型的输入,预测其变化情况,并根据其预测值超出KPCA监控模型的控制限与否来判断设备是否出现故障.实验结果表明,该方法既能较好地预测出滚动轴承的运行状态,又能进一步追踪故障发展趋势,为及时做好维修措施提供理论依据.
推荐文章
基于AR模型和径向基神经网络的滚动轴承故障诊断
滚动轴承
振动信号
AR模型
RBF神经网络
故障诊断
基于时序AR与灰色GM模型的滚动轴承故障诊断研究
滚动轴承
故障诊断
灰色理论
时序模型
多退化变量灰色预测模型的滚动轴承剩余寿命预测
剩余寿命预测
滚动轴承
多退化变量灰色预测模型
退化趋势特征参数
基于pLSA模型的滚动轴承故障检测
滚动轴承故障检测
小波包变换
视觉词袋模型
pLSA模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 全矢KPCA和AR模型结合的滚动轴承故障预测方法
来源期刊 机械设计与制造 学科 工学
关键词 故障预测 核主元分析 全矢谱 AR模型 滚动轴承 信息融合
年,卷(期) 2019,(11) 所属期刊栏目 理论与方法研究
研究方向 页码范围 20-24
页数 5页 分类号 TH16|TH133.3
字数 4103字 语种 中文
DOI 10.3969/j.issn.1001-3997.2019.11.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈磊 郑州大学振动工程研究所 71 341 11.0 15.0
2 韩捷 郑州大学振动工程研究所 196 1599 19.0 30.0
3 林辉翼 郑州大学振动工程研究所 7 7 1.0 2.0
4 高亚娟 郑州大学振动工程研究所 4 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (76)
共引文献  (93)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(11)
  • 参考文献(1)
  • 二级参考文献(10)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(9)
  • 参考文献(0)
  • 二级参考文献(9)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(10)
  • 参考文献(1)
  • 二级参考文献(9)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(4)
  • 参考文献(2)
  • 二级参考文献(2)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
故障预测
核主元分析
全矢谱
AR模型
滚动轴承
信息融合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械设计与制造
月刊
1001-3997
21-1140/TH
大16开
沈阳市北陵大街56号
8-131
1963
chi
出版文献量(篇)
18688
总下载数(次)
40
总被引数(次)
104640
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导