作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了解决微弱目标检测和跟踪的问题,提出了高斯和粒子滤波检测前跟踪算法(GSPF-TBD);该算法基于高斯和粒子滤波递归地估计目标的后验概率密度,不仅避免了基本粒子滤波TBD(检测前跟踪)方法中的重采样过程,而且更能准确地逼近后验概率密度.将粒子滤波算法(PF)、高斯粒子滤波算法(GPF)和高斯和粒子滤波算法(GSPF)应用于弱小目标的检测前跟踪的仿真实验表明,所提出的GSPF-TBD算法提高了对目标的检测和跟踪性能.
推荐文章
改进的多模型粒子滤波弱小目标检测前跟踪方法
弱小目标
检测前跟踪
机动目标
多模型
粒子滤波
基于多特征融合与粒子滤波的红外弱小目标跟踪方法
红外弱小目标
多特征融合
粒子滤波
目标跟踪
基于SVD背景抑制和粒子滤波的弱小目标检测
奇异值分解
背景抑制
粒子滤波
红外小目标检测
高斯过程回归下的扩展目标高斯粒子滤波算法
高斯过程
星凸模型
高斯粒子滤波
扩展目标
形状估计
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 高斯和粒子滤波的弱小目标检测前跟踪算法?
来源期刊 计算机与数字工程 学科 工学
关键词 高斯和粒子滤波 检测前跟踪 弱小目标
年,卷(期) 2019,(9) 所属期刊栏目 信息融合
研究方向 页码范围 2190-2195
页数 6页 分类号 TN713
字数 3252字 语种 中文
DOI 10.3969/j.issn.1672-9722.2019.09.017
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘震 江苏科技大学电子信息学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (29)
共引文献  (5)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(6)
  • 参考文献(1)
  • 二级参考文献(5)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高斯和粒子滤波
检测前跟踪
弱小目标
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与数字工程
月刊
1672-9722
42-1372/TP
大16开
武汉市东湖新技术开发区凤凰产业园藏龙北路1号
1973
chi
出版文献量(篇)
9945
总下载数(次)
28
总被引数(次)
47579
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导