基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
利用贝叶斯网络进行因果关系推理已广泛应用于人工智能领域.基于约束方法从观测数据中构建贝叶斯网络通常得到的是其马尔科夫等价类,因存在无向边而无法进行有效的因果推断.为此,基于贝叶斯网络评分函数,并结合集成学习提出了一种模型融合算法,通过对不同的网络结构加权融合,以减少网络中无向边的个数,进而提高其可推断性.实验结果表明,不仅显著减少了无向边条数,也提高了最终网络结构的学习效果,验证了算法的有效性.
推荐文章
贝叶斯网络结构学习综述
贝叶斯网络
结构学习
数据
统计分析
搜索
基于最大信息系数的贝叶斯网络结构学习算法
贝叶斯网络
结构学习
节点次序
最大信息系数
条件独立性测试
基于因果效应的贝叶斯网络结构学习方法
贝叶斯网络
阿尔茨海默病
K2算法
因果效应
BDe评分
互信息
基于量子遗传算法的贝叶斯网络结构学习
贝叶斯网络
结构学习
量子遗传算法
量子位
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于评分函数的贝叶斯网络结构融合算法
来源期刊 计算机工程与应用 学科 工学
关键词 贝叶斯网络 评分函数 模型融合 因果推断
年,卷(期) 2019,(11) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 147-152
页数 6页 分类号 TP391
字数 6139字 语种 中文
DOI 10.3778/j.issn.1002-8331.1803-0034
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 蔡青松 北京工商大学计算机与信息工程学院 12 58 5.0 7.0
2 陈希厚 北京工商大学计算机与信息工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1995(2)
  • 参考文献(2)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
贝叶斯网络
评分函数
模型融合
因果推断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
北京市自然科学基金
英文译名:Natural Science Foundation of Beijing Province
官方网址:http://210.76.125.39/zrjjh/zrjj/
项目类型:重大项目
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导