基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文为了解决姿态不变的面部表情识别即在任意姿态下的面部表情识别问题,提出了一种端到端的深度学习模型,该模型利用不同的姿态和表情进行面部图像合成扩充训练集,提高了模型的准确度,并有效地解决了姿态不变的面部表情识别问题。本文将介绍表情识别的主要过程以及模型中使用到的生成对抗网络(GAN)。
推荐文章
基于面部结构的表情识别
人脸表情识别
判别响应图拟合
联合Haar-like特征
Boosting学习
基于深度学习的面部表情识别研究
深度学习
表情识别
神经网络
探究跨连特征融合网络的面部表情识别技术
面部表情识别
特征融合
神经网络
基于Gabor和ADABOOST的面部表情识别
面部表情识别
Gabor变换
Adaboost算法
主成分分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于GAN网络的面部表情识别
来源期刊 电子技术与软件工程 学科 工学
关键词 表情识别 深度学习 生成对抗网络
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 3-4
页数 2页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
表情识别
深度学习
生成对抗网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子技术与软件工程
半月刊
2095-5650
10-1108/TP
16开
北京市海淀区玉渊潭南路惠普南里13号楼
2012
chi
出版文献量(篇)
36183
总下载数(次)
321
总被引数(次)
56308
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导