现有的电动汽车充电负荷预测研究中缺乏对用户出行行为和交通路况的精确描述,为此构建了时空图谱注意力网络,对基于城市兴趣点的出行需求和道路交通流量的时空分布进行学习和预测,并计及了日期类型、天气温度和交通事件的影响.通过基于出行时间指数(travel time index,TTI)的Dijkstra算法得到耗时最短的行驶路径,并建立了计及交通路况和气温影响的电动汽车能耗模型以及考虑距离远近和综合充电费用的充电站选择决策模型.基于西安市二环区域的实际出行需求和交通数据,对私家车、出租车和网约车3种用途电动汽车的充电需求进行了预测,并分析了出行需求变化对城市各网格空间内充电站快、慢充负荷的影响,为充电设施的规划提供了参考和依据.