基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Coronary Artery Disease (CAD) is the leading cause of mortality worldwide. It is a complex heart disease that is associated with numerous risk factors and a variety of Symptoms. During the past decade, Coronary Artery Disease (CAD) has undergone a remarkable evolution. The purpose of this research is to build a prototype system using different Machine Learning Algorithms (models) and compare their performance to identify a suitable model. This paper explores three most commonly used Machine Learning Algorithms named as Logistic Regression, Support Vector Machine and Artificial Neural Network. To conduct this research, a clinical dataset has been used. To evaluate the performance, different evaluation methods have been used such as Confusion Matrix, Stratified K-fold Cross Validation, Accuracy, AUC and ROC. To validate the results, the accuracy and AUC scores have been validated using the K-Fold Cross-validation technique. The dataset contains class imbalance, so the SMOTE Algorithm has been used to balance the dataset and the performance analysis has been carried out on both sets of data. The results show that accuracy scores of all the models have been increased while training the balanced dataset. Overall, Artificial Neural Network has the highest accuracy whereas Logistic Regression has the least accurate among the trained Algorithms.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
与Graves'Disease发病机制相关的基因研究
格雷夫斯病
甲状腺
基因芯片
免疫系统
类固醇激素
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Comparison of Different Machine Learning Algorithms for the Prediction of Coronary Artery Disease
来源期刊 数据分析和信息处理(英文) 学科 医学
关键词 CORONARY ARTERY Disease MACHINE Learning LOGISTIC Regression Support VECTOR MACHINE Artificial Neural Network
年,卷(期) 2020,(2) 所属期刊栏目
研究方向 页码范围 41-68
页数 28页 分类号 R54
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
CORONARY
ARTERY
Disease
MACHINE
Learning
LOGISTIC
Regression
Support
VECTOR
MACHINE
Artificial
Neural
Network
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据分析和信息处理(英文)
季刊
2327-7211
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
106
总下载数(次)
0
论文1v1指导