基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对粒子群优化(particle swarm optimization,PSO)算法无法在提高收敛速度的同时避免早熟的缺陷,提出基于正态分布衰减惯性权重粒子群优化(normal distribution decay inertial weight particle swarm optimization,NDPSO)算法.以正态分布曲线作为惯性权重的衰减策略曲线,通过引入控制因子对粒子的位置进行改善,使得NDPSO算法能很好的在优化过程中平衡全局搜索和局部搜索能力.使用8个标准函数测试分别对粒子群优化(particle swarm optimization,PSO)、线性权重衰减粒子群优化(linear decay inertial weight particle swarm optimization,LDWPSO)、指数权重衰减粒子群优化(exponential decay weight particle swarm optimization,EXPPSO)、收缩因子粒子群优化(constriction factor particle swarm optimization,CFPSO)、高斯分布衰减惯性权重粒子群优化(Gaussian decay inertial weight particle swarm optimization,GDIWPSO)、基于动态加速度系数的粒子群优化(particle swarm optimization based on dynamic acceleration coefficients,PSO-DAC)、性权重自适应粒子群优化(inertia weight adaptive particle swarm optimization,简称PSO-LH)算法以及NDPSO算法进行仿真,分析他们的收敛速度和收敛精度.结果表明,NDPSO算法不管在单峰函数问题还是多峰函数问题上,总体性能都优于其他算法.
推荐文章
基于指数衰减惯性权重的分裂粒子群优化算法
粒子群优化算法
种群多样性
半均匀
分裂
指数衰减惯性权重
基于高斯函数递减惯性权重的粒子群优化算法
粒子群优化
高斯函数
惯性权重
收敛速度
执行效率
基于随机惯性权重的简化粒子群优化算法
粒子群优化算法
简化粒子群
惯性权重
学习因子
随机分布
异步变化
基于局部搜索惯性权重的粒子群优化算法
粒子群优化
局部搜索
参数调整
惯性权重
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于正态分布衰减惯性权重的粒子群优化算法
来源期刊 深圳大学学报(理工版) 学科 工学
关键词 人工智能 群体智能算法 粒子群算法 惯性权重 正态分布 衰减策略
年,卷(期) 2020,(2) 所属期刊栏目 电子与信息科学
研究方向 页码范围 208-213
页数 6页 分类号 TP391
字数 4542字 语种 中文
DOI 10.3724/SP.J.1249.2020.02208
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 季伟东 哈尔滨师范大学计算机科学与信息工程学院 25 94 6.0 9.0
2 罗强 哈尔滨师范大学计算机科学与信息工程学院 4 1 1.0 1.0
3 孙小晴 哈尔滨师范大学计算机科学与信息工程学院 5 2 1.0 1.0
4 徐浩天 哈尔滨师范大学计算机科学与信息工程学院 3 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (58)
共引文献  (60)
参考文献  (10)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(7)
  • 参考文献(1)
  • 二级参考文献(6)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(6)
  • 参考文献(0)
  • 二级参考文献(6)
2017(6)
  • 参考文献(4)
  • 二级参考文献(2)
2018(3)
  • 参考文献(2)
  • 二级参考文献(1)
2020(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人工智能
群体智能算法
粒子群算法
惯性权重
正态分布
衰减策略
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
深圳大学学报(理工版)
双月刊
1000-2618
44-1401/N
大16开
深圳市南山区深圳大学行政楼419室
46-206
1984
chi
出版文献量(篇)
1946
总下载数(次)
10
总被引数(次)
10984
论文1v1指导