基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在基于稀疏表示的图像超分辨率方法中,字典的选择对最终重建质量具有重要影响.目前K-SVD作为基于外部样本学习的过冗余字典在图像重建领域取得广泛的成功,但同时也限制信号输入维度,带来信号降维过程的信息损失.针对这一问题,提出引入一种双稀疏模型,结合结构化字典和非结构化字典优点,避免降维过程信息损失同时保证训练精度;重建阶段引入非局部自相似性约束,迭代求解稀疏系数,降低编码噪声,最终重建高分辨率图像.实验结果表明,该算法在图像质量客观评价指标上优于对比算法,并且在主观视觉效果上获得更清晰的边缘等细节信息.
推荐文章
基于稀疏表示和自相似学习的图像超分辨率重构
超分辨率重构
稀疏表示
附加信息
自相似学习
基于回归函数结合局部自相似的单帧图像超分辨率算法
完备字典
稀疏线性组合
超分辨率
单帧
局部自相似
局部回归
基于改进PatchMatch的自相似性图像超分辨率算法
超分辨率
PatchMatch
模拟退火
自相似性
边缘相似度
图像块匹配
基于引导滤波和多尺度局部自相似单幅红外图像超分辨率方法
超分辨率
引导滤波
多尺度
局部自相似
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于双稀疏模型和非局部自相似约束的超分辨率算法研究
来源期刊 云南民族大学学报(自然科学版) 学科 工学
关键词 超分辨率 双稀疏模型 非局部自相似性
年,卷(期) 2020,(1) 所属期刊栏目 大数据与机器学习
研究方向 页码范围 59-64
页数 6页 分类号 TP391.41
字数 4107字 语种 中文
DOI 10.3969/j.issn.1672-8513.2020.01.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周大可 南京航空航天大学自动化学院 53 273 10.0 13.0
2 杨欣 南京航空航天大学自动化学院 65 288 10.0 13.0
3 谢堂鑫 南京航空航天大学自动化学院 2 0 0.0 0.0
4 朱晨 南京航空航天大学自动化学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (42)
共引文献  (54)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1978(1)
  • 参考文献(1)
  • 二级参考文献(0)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(1)
  • 二级参考文献(0)
1989(3)
  • 参考文献(1)
  • 二级参考文献(2)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(6)
  • 参考文献(1)
  • 二级参考文献(5)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(7)
  • 参考文献(2)
  • 二级参考文献(5)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
超分辨率
双稀疏模型
非局部自相似性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
云南民族大学学报(自然科学版)
双月刊
1672-8513
53-1192/N
大16开
中国昆明市一二·一大街134号
1992
chi
出版文献量(篇)
2286
总下载数(次)
5
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导