基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高视频表情实时分类的识别率和实时性,提出LBP特征结合SVM进行决策表情分类的方法.首先获取视频流中的图像并进行预处理,然后使用LBP算子检测人脸,通过多级级联回归树模型对人脸68个关键点进行训练,分别记录表情特征,最后利用SVM训练表情识别模型并预测表情.实验采用Helen dataset作为训练集,CK+数据库作为测试集,平均识别率达到了86.2%,实时性也达到了平均20帧/s.实验结果表明,该方法性能优越,提高了算法的识别率和鲁棒性,同时保证了算法的实时性.
推荐文章
结合LBP特征和深度学习的人脸表情识别
图像处理
LBP特征
人脸检测
卷积神经网络
人脸表情识别
基于 LBP/VAR 与 DBN 模型的人脸表情识别
深度信念网络
表情识别
局部二进制模式
深度学习
基于PCA与SVM结合的面部表情识别的智能轮椅控制
面部表情识别
主成分分析
支持向量机
面部有效区域提取
智能轮椅控制
基于小波分解和优选的VLBP特征的表情识别方法
表情识别
时空局部二值模式
小波分解
神经网络
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合LBP和SVM的视频表情识别方法
来源期刊 山东理工大学学报(自然科学版) 学科 工学
关键词 表情识别 视频 LBP SVM
年,卷(期) 2020,(4) 所属期刊栏目
研究方向 页码范围 67-72
页数 6页 分类号 TP391.41
字数 3954字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 徐国明 安徽新华学院信息系统软件研究所 8 13 3.0 3.0
2 姚丽莎 安徽新华学院信息系统软件研究所 21 43 3.0 5.0
3 房波 安徽新华学院信息系统软件研究所 4 1 1.0 1.0
4 周欢 安徽新华学院信息系统软件研究所 6 2 1.0 1.0
5 何世雄 安徽新华学院信息系统软件研究所 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (36)
共引文献  (45)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(7)
  • 参考文献(2)
  • 二级参考文献(5)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(5)
  • 参考文献(5)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
表情识别
视频
LBP
SVM
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山东理工大学学报(自然科学版)
双月刊
1672-6197
37-1412/N
大16开
山东省淄博市张周路12号
1985
chi
出版文献量(篇)
2724
总下载数(次)
4
总被引数(次)
12440
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导