高效准确地预测锂电池的健康状态(State of health,SOH)可以保证锂电池的正常运行,提高维护效率及电池本身的稳定性.提出一种基于有监督核自组织映射(Supervised kernel self-organizing map,SKSOM)的建模方法用于锂电池SOH预测.首先,对锂电池的原始放电数据进行预处理及归一化;然后,设计并优化了针对SKSOM的输入特征,在此基础上训练出SOH预测模型;最后,在美国国家航空航天局(National Aeronautics and Space Administration,NASA)的标准锂电池数据集上进行验证.实验结果表明,该文所用的预测模型能有效挖掘出锂电池的SOH规律,预测性能优于其他已有的SOH预测模型.