基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
[目的]通过实现复杂多变环境下非接触式猪个体身份识别,提高畜牧行业的生产效率.[方法]以猪舍环境下猪的脸部图像为基础,提出了一种基于多尺度卷积神经网络在多变环境下的猪个体身份识别模型.利用改进的多尺度网络结构,该模型实现了深度和宽度的扩展,网络深度达到了86层.网络不仅使用了对称和非对称的两种方法拆分卷积核和多通道的方法并行提取猪脸特征,还利用网络融合技术和Batch Normalization结构过滤掉通道中的冗余信息.避免了深层网络参数激增,增强了模型对猪脸特征的提取能力并提高模型的识别速度.利用预处理后的11695张猪脸数据集训练并验证模型,通过设置7组不同环境下的对比实验,分析改进的模型在复杂环境下的识别效果.[结果]86层的基于多尺度分类网络的识别模型权重大小和每轮样本的训练时间分别为498.4 M和66 s,比16层的VGG网络权重小1140 M,每轮训练速度快8 s.利用7组测试集的对比实验的结果表明,提出的模型在7种环境下的识别率都高于其他网络,尤其是在真实养殖环境下识别率高达99.81%.当猪脸图像中出现遮挡和旋转的情况时,提出的模型识别率皆高于92%.[结论]提出的针对脸部特征的猪个体身份识别模型是有效的,并在多变环境下具有较高的识别率和鲁棒性,为实现一体化管理及追踪溯源的研究提供参考.
推荐文章
基于多尺度卷积神经网络模型的手势图像识别
卷积神经网络
卷积核
深度学习
特征提取
手势识别
二值化
基于多尺度卷积神经网络的交通标志识别
模式识别系统
交通标志识别
多尺度卷积神经网络
SoftMax分类器
基于多尺度卷积神经网络的交通标志识别方法
智能交通
深度学习
交通标志识别
多尺度目标识别
神经网络
加权融合
多尺度卷积递归神经网络的RGB-D物体识别
多尺度
3D曲面法线
递归神经网络
RGB-D物体识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多变环境下基于多尺度卷积网络的猪个体识别
来源期刊 江西农业大学学报 学科 农学
关键词 猪脸识别 图像分类 卷积神经网络 深度学习
年,卷(期) 2020,(2) 所属期刊栏目 生物技术与工程
研究方向 页码范围 391-400
页数 10页 分类号 S828
字数 5661字 语种 中文
DOI 10.13836/j.jjau.2020046
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 史再峰 天津大学微电子学院 29 91 5.0 8.0
2 高荣华 5 22 2.0 4.0
4 李奇峰 3 2 1.0 1.0
10 王荣 天津大学微电子学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (89)
共引文献  (71)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(17)
  • 参考文献(2)
  • 二级参考文献(15)
2014(15)
  • 参考文献(1)
  • 二级参考文献(14)
2015(8)
  • 参考文献(2)
  • 二级参考文献(6)
2016(5)
  • 参考文献(2)
  • 二级参考文献(3)
2017(8)
  • 参考文献(1)
  • 二级参考文献(7)
2018(8)
  • 参考文献(6)
  • 二级参考文献(2)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
猪脸识别
图像分类
卷积神经网络
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
江西农业大学学报
双月刊
1000-2286
36-1028/S
大16开
江西省南昌市志敏大道1101号
44-102
1979
chi
出版文献量(篇)
4722
总下载数(次)
4
论文1v1指导